1) Resolva os seguintes sistemas:
a) 3x - y = 36
X + y = 24
b) X + y = 30
4x - y = 20
Soluções para a tarefa
Resposta:
a) x = 15 e y = 9
b) x = 10 e y = 20
Explicação passo-a-passo:
Cada um tem três jeitos de resolver
Método da substituição:
Isola uma incógnita em uma equação, depois substitui na outra equação, aí despois de descobrir repete o processo
- a)
{ 3x - y = 36
{ x + y = 24
x + y = 24
y = 24 - x
3x - y = 36
3x - (24 - x) = 36
3x - 24 - x = 36
4x - 24 = 36
4x = 24 + 36
4x = 60
x = 60/4
x = 15
y = 24 - x
y = 24 - 15
y = 9
- b)
{ x + y = 30
{ 4x - y = 20
x + y = 30
y = 30 - x
4x - (30 - x) = 20
4x - 30 + x = 20
5x = 20 + 30
5x = 50
x = 50/5
x = 10
y = 30 - x
y = 30 - 10
y = 20
Método da adição:
Soma as equações e encontra uma incógnita, depois substitui na outra equação. A linha em baixo serve pra mostrar que é adição
- a)
{ 3x - y = 36
{ x + y = 24
4x + 0 = 60
4x = 60
x = 60/4
x = 15
x + y = 24
15 + y = 24
y = 24 - 15
y = 9
- b)
{ x + y = 30
{ 4x - y = 20
5x + 0 = 50
5x = 50
x = 50/5
x = 10
x + y = 30
10 + y = 30
y = 30 - 10
y = 20
Método da comparação:
Isola a mesma incógnita em cada equação e coloca o resto em uma nova equação
- a)
{ 3x - y = 36
{ x + y = 24
3x - y = 36
- y = 36 - 3x
Quando o lado de uma incógnita está negativo, pode multiplicar a equação toda por -1 (isso serve pra mudar o sinal)
y = -36 + 3x
x + y = 24
y = 24 - x
- 36 + 3x = 24 - x
3x + x = 24 + 36
4x = 60
x = 60/4
x = 15
y = 24 - x
y = 24 - 15
y = 9
- b)
{ x + y = 30
{ 4x - y = 20
x + y = 30
y = 30 - x
4x - y = 20
- y = 20 - 4x
y = - 20 + 4x
30 - x = - 20 + 4x
30 + 20 = 4x + x
50 = 5x
50/5 = x
10 = x
y = 30 - x
y = 30 - 10
y = 20
Explicação passo-a-passo:
MÉTODO DA ADIÇÃO
a)
x=15 e y=9