Matemática, perguntado por Gabrielasantos191, 1 ano atrás

1)O valor de x para que a sequência (2×,×+1,3×)seja uma P.A é:
2)Determine a soma dos quinze primeiros termos da P.A =(-3,4,11,...)
3)Qual é o 8(oitavo) termo da P.G=(3,12,48,..)
4)Interpole três meios geométricos entre 1 e 625.
4)Calcule a soma dos termos da P.G. finita an=(4,15,45,....3645)

Soluções para a tarefa

Respondido por Sei095lá
0
1) 2x+3x/2= x+1
5x/2=x+1
5x= 2x+2
3x= 2
x= 2/3

2)
a15= a15
a1= -3
n= 15
r= 7

a15= a1+(n-1)*r
a15= -3+(15-1)*7
a15= -3+ 14*7
a15= -3+98
a15= 95

Soma= (a1+an)*n/2
Soma= (-3+95)*15/2
Soma= 92*15/2
Soma= 1380/2
Soma= 690

3)

an= an
a1= 3
n= 8
q= 4

an= a1*q^n-1
an= 3*4^7
an= 3*16.384
an= 49.152

4)

1 _, _, _, 625

an= 625
a1= 1
n= 5
q= q

an= a1*q^n-1
625= 1*q^5-1
625= q^4
5^4= q^4
q= 5

Resposta: 1, 5, 25, 125, 625

5)

acho que essa sequência está errada, o primeiro termo deveria ser o número 5

an= a1*q^n-1
3645= 5*3^n-1
3645/5= 3^n-1
729= 3^n-1
3^6= 3^ n-1
n-1= 6
n= 6+1
n= 7

Sn = a1 (q^n – 1) 
               q - 1

Sn = 5* (3^7 – 1) 
               3-1

Sn= 5*2186/2

Sn= 10930/2
Sn= 5.465



Perguntas interessantes