Matemática, perguntado por gabrie345, 1 ano atrás

1) O quadrilátero ABCD, representado num sistema de coordenadas cartesianas ortogonais, foi dividido em duas

regiões triangulares, S1 e S2, pelo segmento AC, conforme

mostra a figura a seguir.

Dados A (0, –1) e C (4, 5), qual a distância entre os pontos A e C

Anexos:

Soluções para a tarefa

Respondido por Mattraphaellgmailcom
3
d= (4-0)^2 + ( 5-(-1))^2
d= (4)^2 + (6)^2
d= 16 + 36
d= raiz 52
2raiz de 13
Anexos:

gabrie345: e nessa fica raiz de 2 ? A(2,5) e B(-1,1)
Mattraphaellgmailcom: Não
niltonjr2001: Não, fica 5.
Mattraphaellgmailcom: Vai dar raiz de 25 que é 5
gabrie345: então eu coloquei os ponto de maneira errada? √(-1 2)+(1-5)
Mattraphaellgmailcom: Vai ficar ( -1 -2) + (1 - 5) = ( -3)^2 + (-4)^2= 9 + 16 = raiz de 25 que é 5
Mattraphaellgmailcom: vc esqueceu o menos da fórmula
gabrie345: a oky, muito obrigado a todos
gabrie345: so mais uma pergunta como fica essas duas:
gabrie345: a(2/3 ,1) b (-2, 3/2) é A(√5,-2) e B(0,-2)
Respondido por niltonjr2001
2
Na Geometria Analítica, para calcularmos a distância entre dois pontos, basta utilizarmos a fórmula:

d_{AB}= \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}} \\ d_{AB}= \sqrt{(4-0)^{2}+(5-(-1))^{2}} \\ d_{AB}= \sqrt{4^{2}+6^{2}} \ | \ d_{AB}=\sqrt{52} \\ d_{AB}=2 \sqrt{13}

gabrie345: eu estava com duvida de como aplicava ela
gabrie345: pq tem esse 2 na resposta 2 raiz de 13?
niltonjr2001: Decompondo a raiz de 52, temos raiz de 2.2.13, ou 2².13; O número ao quadrado sai da raiz, multiplicando-a.
Perguntas interessantes