Matemática, perguntado por larissa01bueno, 1 ano atrás

1) Encontre a forma geral da equação da reta que passa pelos pontos:
a) (0,2) e (2,3) b) (-1,2) e (-2,5) c) (-1,-2) e (-1/2 , 3) d) (0,-3) e (3, -2)

Soluções para a tarefa

Respondido por jjzejunio
91
Olá!!!


Resolução!!!



Vou usar determinante pois acho mais fácil.



a) (0, 2) e (2, 3)


| X Y 1 X Y |
| 0 2 1 0 2 |
| 2 3 1 2 3 |

2X + 2Y - 3X - 4 = 0
-X + 2Y - 4 = 0


Eq. Geral: X - 2Y + 4 = 0



==============================

b) (-1, 2) e (-2, 5)


| X Y 1 X Y |
| -1 2 1 -1 2 |
|-2 5 1 -2 5 |


2X - 2Y - 5 + Y - 5X + 4 = 0
2X - 5X - 2Y + Y - 5 + 4 = 0
-3X - Y - 1 = 0 . (-1)
3X + Y + 1 = 0



Eq. Geral: 3X + Y + 1 = 0


================================

C) (-1, -2) e (-1/2, 3)


|.. X. Y 1. X Y |
| ..-1 -2 1. -1 -2 |
|-1/2 3 1 -1/2 3 |


-2X - 1/2Y - 3 + Y - 3X + 1 = 0
-2X - 3X - 1/2Y + Y - 3 + 1 = 0
-6X + 1/2Y - 2 = 0
6X - 1/2Y + 2 = 0




Eq. geral: 6x - 1/2y + 2 = 0


===============================

d) (0, -3) e (3, -2)


| X Y 1 X Y |
| 0 -3 1 0 -3 |
| 3 -2 1 3 -2 |


-3X + 3Y + 2X + 9 = 0
-3X + 2X + 3Y + 9 = 0
-X + 3Y + 9 = 0


Eq. geral: -x + 3y + 9 = 0





★Espero ter ajudado!tmj.



larissa01bueno: Obrigada!!!
Respondido por silvageeh
20

A forma geral da equação da reta que passa pelos pontos dados: a) -x + 2y = 4; b) 3x + y = -1; c) -10x + y = 8; d) -x + 3y = -9.

A equação reduzida da reta é igual a y = ax + b. Para determinarmos a equação da reta, vamos substituir os dois pontos dados em cada item na equação y = ax + b e resolver o sistema linear obtido.

a) Se a reta passa pelos pontos (0,2) e (2,3), então:

{b = 2

{2a + b = 3.

Substituindo o valor de b na segunda equação:

2a + 2 = 3

2a = 1

a = 1/2.

Logo, a equação da reta é:

y = x/2 + 2

2y = x + 4

-x + 2y = 4.

b) Se a reta passa pelos pontos (-1,2) e (-2,5), então:

{-a + b = 2

{-2a + b = 5.

Da primeira equação, podemos dizer que b = a + 2.

Substituindo o valor de b na segunda equação:

-2a + a + 2 = 5

-a = 3

a = -3.

Consequentemente:

b = -3 + 2

b = -1.

Portanto, a equação da reta é:

y = -3x - 1

3x + y = -1.

c) Se a reta passa pelos pontos (-1,-2) e (-1/2,3), então:

{-a + b = -2

{-a/2 + b = 3.

Da primeira equação, temos que b = a - 2.

Substituindo o valor de b na segunda equação:

-a/2 + a - 2 = 3

-a + 2a - 4 = 6

a = 10.

Consequentemente:

b = 10 - 2

b = 8.

Logo, a equação da reta é:

y = 10x + 8

-10x + y = 8.

d) Se a reta passa pelos pontos (0,-3) e (3,-2), então:

{b = -3

{3a + b = -2.

Substituindo o valor de b na segunda equação:

3a - 3 = -2

3a = 1

a = 1/3.

Portanto, a equação da reta é:

y = x/3 - 3

3y = x - 9

-x + 3y = -9.

Exercício sobre equação da reta: https://brainly.com.br/tarefa/20098060

Anexos:
Perguntas interessantes