Matemática, perguntado por emanuelle17larissa, 6 meses atrás

1)Dois triângulos semelhantes possuem razão entre suas áreas igual a 9. Se o perímetro de um deles é 10, o perímetro do outro deve ser:
a)5
b)10
c)15
d)30
me ajudem 11 pontos por favor ↑

Soluções para a tarefa

Respondido por rafaeljjjjj
1

O perímetro do outro triângulo deverá ser de 30 unidades de medida.

Semelhança entre triângulos é um conceito matemático que existe quando dois triângulos possuem medidas que são proporcionais por uma razão r. Para acontecer, ambos os triângulos devem ter os mesmos ângulos os formando.

Para descobrirmos a razão entre os triângulos, basta dividirmos um dos lados do triângulo maior por um lado correspondente do triângulo menor.

Temos, também, que a razão entre as áreas de dois triângulos semelhantes equivale ao quadrado da razão entre os perímetros (soma dos lados do triângulo).

Assim, temos que a razão das áreas dos triângulos do exercício corresponde a 9. Como esse valor corresponde ao quadrado da razão entre seus perímetros, podemos extrair a raiz quadrada de 9 para obter essa razão. Com isso, temos que \sqrt{9} = 3 é a razão de semelhança dos perímetros.

Com isso, como temos que o perímetro de um deles é 10, o do outro deve ser esse valor vezes 3 ou dividido por 3. Entre as opções, encontramos 30, que é 3 x 10. Assim, descobrimos que o perímetro do outro triângulo é 30.

Perguntas interessantes