Química, perguntado por johannburgos12, 6 meses atrás

1) Dois recipientes, A e B, contêm, respectivamente, O2 e N2, ambos a 25°C, e são ligados por uma válvula. O recipiente A contém 2,5 L de O2 e 1,1 atm; o recipiente B contém 1,2 L de N2 a 0,8 atm. Abrindo-se a válvula, os dois gases se misturam. Supondo que a temperatura do conjunto não tenha se alterado, qual será a pressão total da mistura final?

Soluções para a tarefa

Respondido por taiemecarvalho
0

Resposta:

Alternativa “b”.

Vamos usar a equação de estado dos gases (PV = nRT) para descobrir as pressões parciais de cada gás na mistura, mas precisamos primeiro descobrir a quantidade em matéria (mol). Vamos fazer isso por meio de regras de três:

N2:                                                        O2:

1 mol de N2 ------ 28 g de N2                          1 mol de O2------ 32 g de O2

nN2 --------- 14,0 g de N2                                  nO2 --------- 8,0 g de O2

nN2 = 14,0 g . 1 mol                               nO2 = 8,0 g . 1 mol

           28 g 32 g

nN2 = 0,5 mol de N2                                     nO2 = 0,25 mol de O2

Agora é só aplicar na equação de estado dos gases para descobrir a pressão parcial de cada um. Além disso, é necessário passar a temperatura para kelvin (27 ºC + 273 = 300 K).

PN2V = nN2RT

PN2 = nN2RT

             V

PN2 = (0,5 mol) . (0,082 atm . L . mol-1 . K-1) . (300 K)

                                          30 L

PN2 = 0,41 atm

PO2V = nO2RT

PO2 = nO2RT

           V

PO2 = (0,25 mol) . (0,082 atm . L . mol-1 . K-1) . (300 K)

                                         30 L

PO2 = 0,205 atm

Agora vamos descobrir a pressão total da mistura, que é igual à soma das pressões parciais:

PTOTAL = PN2 + PO2

PTOTAL = 0,41 + 0,205

PTOTAL = 0,615 atm

Alternativa “c”.

Podemos calcular as frações em quantidade de matéria (X) de cada gás e depois fazer uma regra de três para descobrir as porcentagens em volume:

Xgás = Pgás

           PTOTAL

PTOTAL = PN2 + PCO2 + PH2SPTOTAL = 0,6 + 0,9 + 1,5

PTOTAL = 3,0 atm

XN2 = 0,6 atm XCO2 = 0,9 atm XH2S = 1,5 atm

         3,0 atm              3,0 atm            3,0 atm

       XN2 = 0,2            XCO2 = 0,3       XH2S = 0,5

  1 --- 100%                 1 --- 100%                   1 --- 100%

0,2 --- %VN2                 0,3 --- %VCO2                   0,5 --- %VH2S

%VN2 = 0,2 .100%    %VCO2= 0,3 .100%     %VH2S= 0,5 . 100%

%VN2 = 20%            %VCO2 = 30%            %VH2S = 50%

Ver a questão

Resposta - Questão 3

Alternativa “c”.

Precisamos descobrir o volume de cada gás na mistura e depois somá-los para conseguir o valor aproximado do volume total do recipiente. Vamos fazer isso através da equação de estado dos gases

VO2= nO2RT

           P

VO2= (0,3 mol) . (0,082 atm . L . mol-1 . K-1) . (273 K)

                          1,12 atm

VO2≈ 6 L

VN2= nN2RT

           P

VN2= (0,4 mol) . (0,082 atm . L . mol-1 . K-1) . (273 K)

                          1,12 atm

VN2≈ 8 L

VAr= nArRT

         P

VAr= (0,3 mol) . (0,082 atm . L . mol-1 . K-1) . (273 K)

                         1,12 atm

VAr≈ 6 L

VTOTAL = VO2 + VN2 + Var

VTOTAL = 6 + 8 + 6

VTOTAL = 20 L.

Ver a questão

Resposta - Questão 4

Alternativas “d” e “e”.

a) Se considerarmos que foram colocados 4 g dos dois gases, o número de mol de cada um na amostra será:

1 mol de H2 --- 2 g                            1 mol de He --- 4 g

           nH2 --- 4 g                             nHe = 1 mol de He

             nH2 = 2 mol de H2

Aplicando esses valores na equação de estado dos gases, descobrimos os valores das pressões parciais:

PH2V = nH2RT

PH2 = nH2RT

            V

PH2 = (2,0 mol) . (0,082 atm . L . mol-1 . K-1) . (298 K)

                               10 L

PH2 = 4,8872 atm

PHeV = nHeRT

PHe = nH2RT

           V

PHe = (1,0 mol) . (0,082 atm . L . mol-1 . K-1) . (298 K)

                                   10 L

PHe = 2,4436 atm

Dessa forma, percebemos que a pressão parcial exercida pelo He na mistura é a metade da pressão parcial exercida pelo H2, e não o dobro como foi dito no enunciado.

b) A pressão total do sistema com os dados da letra “a” é dada por:

PTOTAL = 4,8872 + 2,4436

PTOTAL = 7,3308 atm

Agora vamos fazer os cálculos para descobrir qual será a pressão se o volume do recipiente for aumentado para 30 L:

PH2V = nH2RT

PH2 = nH2RT

             V

PH2 = (2,0 mol) . (0,082 atm . L . mol-1 . K-1) . (298 K)

                                     30 L

PH2 = 1,629 atm

PHeV = nHeRT

PHe = nH2RT

           V

PHe = (1,0 mol) . (0,082 atm . L . mol-1 . K-1) . (298 K)

                                      30 L

PHe = 0,814 atm

Pressão total:

PTOTAL = 1,629 + 0,814

PTOTAL = 2,443 atm

Observe que, na realidade, a pressão diminuiu cerca de 1/3 da inicial, e não triplicou como disse o enunciado.

c) As quantidades de partículas H2 e He na mistura não são iguais, pois temos o dobro de partículas de H2, como mostrado na letra "a"

Explicação:

espero ter te ajudado, bons estudos

Respondido por vIkeda
0

Considerando que a temperatura do conjunto não se alterou, pode-se afirmar que a pressão total da mistura será de aproximadamente 1 atm

Como determinar a pressão total da mistura de gases?

Inicialmente, devemos determinar a quantidade em mol dos gases presentes na amostra. Para isso, devemos utilizar a fórmula PV =nRT, como pode ser observado a abaixo:

  • Gás oxigênio

PV = nRT

1,1 atm × 2,5 L = n × 0,082 × 298 K

n = 0,112 mol

  • Gás nitrogênio

PV = nRT

0,8 atm × 1,2 L = n' × 0,082 × 298 K

n' = 0,04 mol

Portanto, após a mistura dos gases, pode-se afirmar que o volume total será de 3,7 L (2,5 L + 1,2 L) e o número de mols igual a 0,152 (0,04 + 0,112). Substituindo na fórmula, temos:

PV = nRT

P × 3,7 L = 0,152 × 0,082 × 298 K

P ≅ 1 atm

Saiba mais sobre Gases ideais em: brainly.com.br/tarefa/51457065

#SPJ2

Anexos:
Perguntas interessantes