1) Dois carros partem em sentidos opostos, com a mesma velocidade, em uma estrada de 30
km, sendo um do km 0 em direção ao km 30, e o outro saindo do km 30 em direção ao km 0.
Em qual quilômetro da estrada os dois se encontrarão?
2) Como ficaria o problema anterior se o carro que parte do km 0 tiver o dobro da
velocidade do carro que parte do km 30?
3) E se o carro que parte do km 0 for 4 vezes mais rápido que o outro?
Soluções para a tarefa
2X=30
X=15
CONCLUSÃO: NO QUILÔMETRO 15
1) NO QUILÔMETRO 15
2) 0+2X=30-X
3X=30
X=10
CONCLUSÃO: NO QUILÔMETRO 20
3) 0+4X=30-X
5X=30
X=6
CONCLUSÃO: QUILÔMETRO 24
Os dois carros se encontrarão:
1) No km 15.
2) No km 20.
3) No km 24.
Velocidade e posição
No movimento uniforme, a equação que determina a posição de um corpo é:
s = s0 + v0·t
onde:
- s = posição final;
- s0 = posição inicial;
- v0 = velocidade inicial;
- t = tempo.
Seja A o carro que parte do km 0 e B o carro que parte do km 30, podemos escrever suas equações de posição:
sA = 0 + v·t
sB = 30 - v·t
1) Os dois carros se encontrarão quando sA = sB:
v·t = 30 - v·t
2·v·t = 30
t = 30/2v
t = 15/v
Substituindo t em uma das equações:
sB = 30 - v·(15/v)
sB = 15 km
2) Se A tiver o dobro da velocidade (2v), temos:
2v·t = 30 - v·t
3·v·t = 30
t = 30/3v
t = 10/v
sB = 30 - v·(10/v)
sB = 20 km
2) Se A tiver o quadrúplo da velocidade (4v), temos:
4v·t = 30 - v·t
5·v·t = 30
t = 30/5v
t = 6/v
sB = 30 - v·(6/v)
sB = 24 km
Leia mais sobre velocidade e posição em:
https://brainly.com.br/tarefa/18324295
https://brainly.com.br/tarefa/38400707