1. Determine os valores de a e b reais, de modo que Z1 seja igual a Z2. Z1=7+bi e Z2=a-5i a) a= 7 ; b=5 b) a=-7 ; b=-5 c) a=0 ; b= 0 d) a=3 ; b=5 2. Dados os número complexos z1=1+2i , z2=-4+i, qual o resultado de z1.z2? * a) 7+4i b) -6-7i c) -10-11i d)-2+9i 3. Qual é o conjugado do seguinte número complexo: -9+3i? * a) -9+3i b) 9+3i c) -9-3i d) -3i 4. Determine o módulo do seguinte número, z=3+4i * a) 7 b) 9 c) 3 d) 5 Alguém ajuda por favor é urgente e vale nota
Soluções para a tarefa
Respondido por
0
Explicação passo-a-passo:
1)
z1 = 7 + bi
z2 = a - 5i
• a = 7
• b = -5
2)
z1.z2 = (1 + 2i).(-4 + i)
z1.z2 = -4 + i - 8i + 2i²
z1.z2 = -4 + i - 8i + 2.(-1)
z1.z2 = -4 + i - 8i - 2
z1.z2 = -4 - 2 + i - 8i
z1.z2 = -6 - 7i
Letra B
3)
z = -9 + 3i
O conjugado é -9 - 3i
Letra C
4)
z = 3 + 4i
ρ = √3² + 4²
ρ = √9 + 16
ρ = √25
ρ = 5
Letra D
Helppfvr:
Muito obrigado espero que esteja tudo correto... Apenas uma dúvida a 1 é qual alternativa ?
Perguntas interessantes
Matemática,
7 meses atrás
Português,
7 meses atrás
Contabilidade,
10 meses atrás
Filosofia,
10 meses atrás
Matemática,
1 ano atrás