Matemática, perguntado por marcogamesmc63, 8 meses atrás

1) Determine o conjunto verdade das equações exponenciais:
a) 2x= 64 b) 7x= 343


c) 5x = 125 d) 2x+2 = 64



e) 2x + 8 = 512 f) 2x+4 = 16

g) 2x+1 = 64 h) (2x)x = 16

Soluções para a tarefa

Respondido por MuriloAnswersGD
10

Equação Exponencial

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

  • Letra A)

\boxed{\begin{array}{lr} \\  \large \sf \: 2x = 64 \\  \\\large \sf 2x = {2}^{6}  \\  \\ \large \sf \ \cancel 2x^{x}  = \cancel{ {2}^{6}} \\  \\  \boxed{ \red{ \large \sf \: x = 6 }} \\  \: \end{array}}

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

  • Letra B)

\boxed{\begin{array}{lr} \\  \large \sf \: 7x = 343 \\  \\ \large \sf \:7x =  {7}^{3}  \\  \\ \large \sf \cancel{7x^{x}} =  \cancel{ {7}^{3}} \\  \\  \boxed{ \red{\large \sf x = 3}} \\  \: \end{array}}

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

  • Letra C)

\boxed{\begin{array}{lr} \\  \large \sf \sf5x = 125 \\  \\  \large \: \sf  5x =  {5}^{3}  \\  \\ \large \sf \: \cancel{ 5x^{x}  }=   \cancel{5}^{3} \\  \\   \boxed{ \red{\large \sf \: x = 3}} \\  \: \end{array}}

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

  • Letra D)

\boxed{\begin{array}{lr} \\  \large \sf \: {2}^{x + 2}  = 64 \\  \\  \large \sf \:  {2}^{x + 2}  =  {2}^{6}  \\  \\  \large \sf   \cancel{{2}}^{x + 2}  =  \cancel{ {2}}^{6} \\  \\ \large \sf x + 2 = 6 \\  \\ \large \sf x = 6 - 2 \\  \\ \boxed{ \red{ \large \sf x = 4}} \\  \:  \end{array}}

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

  • Letra E)

 \boxed{\begin{array}{lr} \\  \:  \large \sf{2}^{x + 8}  = 512 \\  \\  \large \sf{2}^{x + 8}  =  {2}^{9}  \\  \\\large \sf \cancel{ {2}}^{x + 8}  =  \cancel{  {2}}^{9} \\  \\ \large \sf \: x + 8 = 9 \\  \\ \large \sf \: x = 9 - 8 \\  \\ \boxed{ \red{\large \sf x = 1}} \\  \: \end{array}}

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

  • Letra F)

\boxed{\begin{array}{lr} \\   \large \sf \: {2}^{x + 4}  = 16 \\  \\ \large \sf \: {2}^{x + 4}  =  {2}^{4}  \\  \\ \large \sf \cancel{ {2}}^{x + 4}  =   \cancel{{2}}^{4}  \\  \\\large \sf x + 4 = 4 \\  \\ \large \sf \: x = 4 - 4 \\  \\ \boxed{ \red{\large \sf x = 0}} \\  \:  \end{array}}

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

  • Letra G)

\boxed{\begin{array}{lr} \\  \large \sf \: {2}^{x + 1}  = 64 \\  \\\large \sf \:  {2}^{x + 1}  =  {2}^{6}  \\  \\ \large \sf  \cancel{{2}}^{x + 1}  = \cancel{  {2}}^{6} \\  \\\large \sf \:  x + 1 = 6 \\  \\ \large \sf \: x =  6 - 1 \\  \\ \boxed{ \red{\large \sf \:  x = 5}} \\  \:  \end{array}}

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

  • Letra H)

\boxed{\begin{array}{lr} \\  \large \sf {2}^{{x}^{2}}= 16 \\  \\  \large \sf{2}^{{x}^2}}  = {2}^{4}  \\  \\ \large \sf \cancel{{2}}^{x}  =  \cancel{{2}}^{4} \\  \\ \boxed{ \red{ \large \sf {x}^{2}=4}} \\  \: \end{array}}

Equação do Segundo Grau Incompleta:

 \boxed{\begin{array}{lr} \\ \large \sf {x}^{2} \\ \\ \large \sf x = \pm \sqrt{4} \\ \\ \boxed{ \red{ \large \sf x = \pm 2 }} \\ \: \end{array}}

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

Veja mais em:

  • http://brainly.com.br/tarefa/34027333

  • http://brainly.com.br/tarefa/36997985
Anexos:

MuriloAnswersGD: Cálculos acimaa
Perguntas interessantes