Matemática, perguntado por dudu123994, 7 meses atrás

1. Determine o 16º elemento e a soma dos termos da seguinte progressão aritmética: (3, 7, 11, 15,...). 2. Determine a soma dos 12 primeiros termos de uma P.A. cujo, a1 = 5 e r = 5: 3. Qual soma de 8 termos de uma P.A com razão -2, cujo o último termo é -4? 4. Observe a progressão aritmética a seguir {x - 1, x + 3, x + 7, x + 11}, sabendo que a soma de todos os termos é 32, reescreva a progressão, substituindo o valor de x: 5. Quantos termos tem uma P.A cujo o primeiro termo é 4 e o último termo é 27 e a soma de todos os termos é 155?​

Soluções para a tarefa

Respondido por auditsys
3

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{a_n = a_1 + (n - 1)r}

\mathsf{a_{16} = 3 + (16 - 1)4}

\mathsf{a_{16} = 3 + (15)4}

\mathsf{a_{16} = 3 + 60}

\boxed{\boxed{\mathsf{a_{16} = 63}}}\leftarrow\textsf{n{\'u}mero 1}

\mathsf{a_{12} = 5 + (12 - 1)5}

\mathsf{a_{12} = 5 + (11)5}

\mathsf{a_{12} = 5 + 55}

\mathsf{a_{12} = 60}

\mathsf{S_n = \dfrac{(a_1 + a_n)n}{2}}

\mathsf{S_{12} = \dfrac{(5 + 60)12}{2}}

\mathsf{S_{12} = (65)6}

\boxed{\boxed{\mathsf{S_{12} = 390}}}\leftarrow\textsf{n{\'u}mero 2}

\mathsf{a_{8} = a_1 + (8 - 1)r}

\mathsf{-4 = a_1 + (7)(-2)}

\mathsf{a_1 = 14 - 4}

\mathsf{a_{1} = 10}

\mathsf{S_n = \dfrac{(a_1 + a_n)n}{2}}

\mathsf{S_{8} = \dfrac{(10 - 4)8}{2}}

\mathsf{S_{8} = (6)4}

\boxed{\boxed{\mathsf{S_{8} = 24}}}\leftarrow\textsf{n{\'u}mero 3}

\mathsf{(x - 1) + (x + 3) + (x + 7) + (x + 11) = 32}

\mathsf{4x + 20 = 32}

\mathsf{4x = 32 - 20}

\mathsf{4x = 12}

\mathsf{x = \dfrac{12}{4}}

\mathsf{x = 3}

\mathsf{(3 - 1) , (3 + 3) , (3 + 7) , (3 + 11)}

\boxed{\boxed{\mathsf{2 , 6 , 10 , 14}}}\leftarrow\textsf{n{\'u}mero 4}

\mathsf{S_n = \dfrac{(a_1 + a_n)n}{2}}

\mathsf{155 = \dfrac{(4 + 27)n}{2}}

\mathsf{310 = (4 + 27)n}

\mathsf{310 =31n}

\mathsf{n = \dfrac{310}{31}}

\boxed{\boxed{\mathsf{n = 10}}}\leftarrow\textsf{n{\'u}mero 5}


dudu123994: muito obrigado
Respondido por guchaves09
0

Explicação passo-a-passo:

a

n

=a

1

+(n−1)r

\mathsf{a_{16} = 3 + (16 - 1)4}a

16

=3+(16−1)4

\mathsf{a_{16} = 3 + (15)4}a

16

=3+(15)4

\mathsf{a_{16} = 3 + 60}a

16

=3+60

\boxed{\boxed{\mathsf{a_{16} = 63}}}\leftarrow\textsf{n{\'u}mero 1}

a

16

=63

←n

u

ˊ

mero 1

\mathsf{a_{12} = 5 + (12 - 1)5}a

12

=5+(12−1)5

\mathsf{a_{12} = 5 + (11)5}a

12

=5+(11)5

\mathsf{a_{12} = 5 + 55}a

12

=5+55

\mathsf{a_{12} = 60}a

12

=60

\mathsf{S_n = \dfrac{(a_1 + a_n)n}{2}}S

n

=

2

(a

1

+a

n

)n

\mathsf{S_{12} = \dfrac{(5 + 60)12}{2}}S

12

=

2

(5+60)12

\mathsf{S_{12} = (65)6}S

12

=(65)6

\boxed{\boxed{\mathsf{S_{12} = 390}}}\leftarrow\textsf{n{\'u}mero 2}

S

12

=390

←n

u

ˊ

mero 2

\mathsf{a_{8} = a_1 + (8 - 1)r}a

8

=a

1

+(8−1)r

\mathsf{-4 = a_1 + (7)(-2)}−4=a

1

+(7)(−2)

\mathsf{a_1 = 14 - 4}a

1

=14−4

\mathsf{a_{1} = 10}a

1

=10

\mathsf{S_n = \dfrac{(a_1 + a_n)n}{2}}S

n

=

2

(a

1

+a

n

)n

\mathsf{S_{8} = \dfrac{(10 - 4)8}{2}}S

8

=

2

(10−4)8

\mathsf{S_{8} = (6)4}S

8

=(6)4

\boxed{\boxed{\mathsf{S_{8} = 24}}}\leftarrow\textsf{n{\'u}mero 3}

S

8

=24

←n

u

ˊ

mero 3

\mathsf{(x - 1) + (x + 3) + (x + 7) + (x + 11) = 32}(x−1)+(x+3)+(x+7)+(x+11)=32

\mathsf{4x + 20 = 32}4x+20=32

\mathsf{4x = 32 - 20}4x=32−20

\mathsf{4x = 12}4x=12

\mathsf{x = \dfrac{12}{4}}x=

4

12

\mathsf{x = 3}x=3

\mathsf{(3 - 1) , (3 + 3) , (3 + 7) , (3 + 11)}(3−1),(3+3),(3+7),(3+11)

\boxed{\boxed{\mathsf{2 , 6 , 10 , 14}}}\leftarrow\textsf{n{\'u}mero 4}

2,6,10,14

←n

u

ˊ

mero 4

\mathsf{S_n = \dfrac{(a_1 + a_n)n}{2}}S

n

=

2

(a

1

+a

n

)n

\mathsf{155 = \dfrac{(4 + 27)n}{2}}155=

2

(4+27)n

\mathsf{310 = (4 + 27)n}310=(4+27)n

\mathsf{310 =31n}310=31n

\mathsf{n = \dfrac{310}{31}}n=

31

310

\boxed{\boxed{\mathsf{n = 10}}}\leftarrow\textsf{n{\'u}mero 5}

n=10

←n

u

ˊ

mero 5

Perguntas interessantes