Matemática, perguntado por Anaoleiias, 9 meses atrás

1. Determinar a equação do 2º grau cujas raízes são 5 e 6. * a) x² – 11x + 30 = 0. b) x² – 5x + 6 = 0. c) x² + 5x – 6 = 0. d) x² + 11x – 30 =0. 2. Calcule a soma e o produto das soluções da equação x² – 9x + 4 = 0, usando as relações entre os coefici * a) x’ + x’’ = – 9 e x’ . x’’ = – 4. b) x’ + x’’ = 9 e x’ . x’’ = – 4. c) x’ + x’’ = 9 e x’ . x’’ = 4. d) x’ + x’’ = – 9 e x’ . x’’ = 4.

Soluções para a tarefa

Respondido por HeitorRiquelme
1

Resposta:

1 - A

2- C

Explicação passo-a-passo:

1- Para determinar uma equação de 2° grau através de suas raízes podemos utilizar do método de soma e produto (x₁+x₂= -b/a e x₁.x₂=c/a, para a equação ax²+bx-c). Para a questão consideraremos a = 1, pois todas as opções da resolução o possuem nesse valor. Então:

Sendo x₁ = 5 e x₂ = 6, e a = 1

x₁+x₂= -b/a → 5+6 = -b/1 → b = -(5+6) → b = -11

x₁.x₂= c/a → 5.6 = c/1 → c = 30

Então temos que a equação é:

1x² -11x + 30 = 0

Resposta letra A

2- A soma e produto de uma equação de 2° grau é dada por x₁+x₂= -b/a e x₁.x₂=c/a, para a equação ax²+bx-c, porém quando a = 1 podemos simplificar para x² - Sx + Px (sendo -S o valor de -b/a e P o valor de c/a). Então temos:

equação: x² - 9 + 4 = 0

comparação : x² - Sx + Px = 0

então temos que S = 9, (pois -b/1) e P = 4. Seguinte:

x₁ + x₂ = 9

x₁ . x₂ = 4

Resposta letra C

Perguntas interessantes