Matemática, perguntado por nathallyrabello, 10 meses atrás

1- Dado o número complexo Z = -3 -6i, o calculo do modulo de Z é: *

10 pontos

45

18

raiz de 45

raiz de 18

2- O argumento do número complexo; Z = 1 + i *

10 pontos

30 graus

45 graus

60 graus

120 graus

3- A forma trigonométrica do número complexo Z = 1+i e: *

10 pontos

z = √2. (cos /4 + i sen /4)

z =√2. (cos 3/4 + i sen 3/4)

z = (cos /4 + i sen /4)

z = (cos 3/4 + i sen 3/4)

Soluções para a tarefa

Respondido por CyberKirito
1

Para visualizar a resposta acesse

https://brainly.com.br/tarefa/31492992?utm_source=android&utm_medium=share&utm_campaign=question

\large\boxed{\sf{\underline{m\acute{o}dulo~de~um~n\acute{u}mero~complexo}}} \boxed{\boxed{\boxed{\boxed{\sf{\rho=\sqrt{a^2+b^2}}}}}} \large\boxed{\sf{\underline{argumento~de~um~n\acute{u}mero~complexo}}}\sf{\acute{e}~o~\hat{a}ngulo~\theta~tal~que}\\\boxed{\boxed{\boxed{\sf{cos(\theta)=\dfrac{a}{\rho}~~e~~sen(\theta)=\dfrac{b}{\rho}}}}} \large\boxed{\sf{\underline{Forma~trigonom\acute{e}trica~de~um~n\acute{u}mero~complexo}}} \huge\boxed{\boxed{\boxed{\boxed{\sf{z=\rho\left[cos(\theta)+i\,sen(\theta)\right]}}}}}\dotfill

1)

\sf{z=-3-6i}\\\sf{\rho=\sqrt{(-3)^2+(-6)^2}=\sqrt{9+36}=\sqrt{45}}\\\sf{\rho=\sqrt{3^{\diagdown\!\!\!\!2}\cdot5}}\\\large\boxed{\boxed{\boxed{\boxed{\sf{\rho=3\sqrt{5}}}}}}

2)

\sf{z=1+i}\\\sf{\rho=\sqrt{1^2+1^2}=\sqrt{2}}\\\sf{cos(\theta)=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}}\\\sf{sen(\theta)=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}} \\\large\boxed{\boxed{\boxed{\boxed{\sf{\theta=45^{\circ}}}}}}

3)

\sf{z=1+i}\\\sf{\rho=\sqrt{1^2+1^2}=\sqrt{2}}\\\sf{cos(\theta)=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}}\\\sf{sen(\theta)=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}}\\\sf{\theta=\dfrac{\pi}{4}}\\\large\boxed{\boxed{\boxed{\boxed{\sf{z=\sqrt{2}\left[cos\left(\dfrac{\pi}{4}\right) +i\,sen\left(\dfrac{\pi}{4}\right)\right]}}}}}

Perguntas interessantes