Matemática, perguntado por laviniall2005, 4 meses atrás

1) Dada a função afim f(x) = 2x + 2, determine: a) f(1)
b) f(0)
c) f(1/3)
d) f(-1/2)
help ​

Soluções para a tarefa

Respondido por STRAQQZ
1

Resposta:

\boxed{\begin{cases}\mathtt{f(1) = 4}\\\mathtt{f(0) = 2}\\\\\mathtt{f\left(\dfrac{1}{3}\right) = \dfrac{8}{3}}\\\\\mathtt{f\left(-\dfrac{1}{2}\right) = 1}\\\end{cases}}

Explicação passo a passo:

É nos dada a seguinte função:

\mathtt{f(x) = 2x + 2}

Então, para acharmos o valor de f(1), f(0), f(1/3) e f(-1/2), basta substituir na função dada pelo valor que está entre parênteses.

a) \mathsf{f(x) = 2x + 2 \Rightarrow}\,\mathsf{f(1) = \,?}

\mathtt{f(x) = 2x + 2}\\\mathtt{f(1) = 2 \cdot 1 + 2}\\\mathtt{f(1) = 2 + 2}\\\\\boxed{\mathtt{f(1) = 4}}

b) \mathsf{f(x) = 2x + 2 \Rightarrow}\,\mathsf{f(0) = \,?}

\mathtt{f(x) = 2x + 2}\\\mathtt{f(0) = 2 \cdot 0 + 2}\\\mathtt{f(0) = 0 + 2}\\\\\boxed{\mathtt{f(0) = 2}}

c) \mathsf{f(x) = 2x + 2 \Rightarrow}\,\mathsf{f\left(\frac{1}{3}\right) = \,?}

\mathtt{f(x) = 2x + 2}\\\\\mathtt{f\left(\dfrac{1}{3}\right) = 2 \cdot \dfrac{1}{3} + 2}\\\\\mathtt{f\left(\dfrac{1}{3}\right) = \dfrac{2}{3} + 2}\\\\\mathtt{f\left(\dfrac{1}{3}\right) = \dfrac{2}{3} + \dfrac{6}{3}}\\\\\\\boxed{\mathtt{f\left(\dfrac{1}{3}\right) = \dfrac{8}{3}}}\\\\

d) \mathsf{f(x) = 2x + 2 \Rightarrow}\,\mathsf{f\left(-\frac{1}{2}\right) = \,?}

\mathtt{f(x) = 2x + 2}\\\\\mathtt{f\left(-\dfrac{1}{2}\right) = 2 \cdot \left(-\dfrac{1}{2}\right) + 2}\\\\\mathtt{f\left(-\dfrac{1}{2}\right) = -\dfrac{2}{2} + 2}\\\\\mathtt{f\left(-\dfrac{1}{2}\right) = -1 + 2}\\\\\\\boxed{\mathtt{f\left(-\dfrac{1}{2}\right) = 1}}

Sendo assim, dada a função afim f(x) = 2x + 2, os valores de f(1), f(0), f(1/3) e f(-1/2) são, respectivamente, 4, 2, 8/3 e 1.

Dúvidas? Comente.


laviniall2005: muito obrigada
STRAQQZ: Disponha :D
Perguntas interessantes