Matemática, perguntado por 2501444, 5 meses atrás

1) Construir a matriz A=(aij)2×5 : tal que aij=2i+j

2)construir a matriz A=(aij)4×3 ;tal aij=i-j^2​

Soluções para a tarefa

Respondido por snow7whitee
1

Resposta:

1. A=(aij) 2x5

A=\left[\begin{array}{ccccc}a&a&a&a&a\\a&a&a&a&a\end{array}\right] \\

aij=2i+j

A=\left[\begin{array}{ccccc}(2.1+1)&(2.1+2)&(2.1+3)&(2.1+4)&(2.1+5)\\(2.2+1)&(2.2+2)&(2.2+3)&(2.2+4)&(2.2+5)\end{array}\right] \\\\A=\left[\begin{array}{ccccc}3&4&5&6&7\\5&6&7&8&9\end{array}\right] \\\\

2. A=(aij) 4x3

A= \left[\begin{array}{ccc}a&a&a\\a&a&a\\a&a&a\\a&a&a\end{array}\right]

aij=i-j^2

A= \left[\begin{array}{ccc}(1-1^{2}) &(1-2^{2})&(1-3^{2})\\(2-1^{2})&(2-2^{2})&(2-3^{2})\\(3-1^{2})&(3-2^{2})&(3-3^{2})\\(4-1^{2})&(4-2^{2})&(4-3^{2})\end{array}\right]

A= \left[\begin{array}{ccc}0 &-3&-8\\1&-2&-7\\2&-1&-6\\3&0&-5\end{array}\right]

Perguntas interessantes