Matemática, perguntado por gabiwolf, 1 ano atrás

1 - Considere as matrizes
A = ( Aij) e B ( bij ), quadradas de ordem 3 com Aij = 3i + 4j e bij = - 4i -3j, Sabendo que C=A+B ,determine C2 ao quadrado



Soluções para a tarefa

Respondido por Verkylen
2
\begin{matrix}A=(a_{ij})_{3\times3}}\\\\a_{ij}=3i+4j\end{matrix}\qquad\qquad\qquad\qquad\begin{matrix}B=(b_{ij})_{3\times3}}\\\\b_{ij}=-4i-3j\\\end{matrix}\\\\\\\\C=A+B\Leftrightarrow c_{ij}=a_{ij}+b_{ij}\\\\c_{ij}=(3i+4j)+(-4i-3j)\to c_{ij}=-i+j



\\\\\\c_{11}=-(1)+(1)\to c_{11}=0\\\\c_{12}=-(1)+(2)\to c_{12}=1\\\\c_{13}=-(1)+(3)\to c_{13}=2\\\\c_{21}=-(2)+(1)\to c_{21}=-1\\\\c_{22}=-(2)+(2)\to c_{22}=0\\\\c_{23}=-(2)+(3)\to c_{23}=1\\\\c_{31}=-(3)+(1)\to c_{31}=-2\\\\c_{32}=-(3)+(2)\to c_{32}=-1\\\\c_{33}=-(3)+(3)\to c_{33}=0



C=\left[\begin{array}{ccc}c_{11}&c_{12}&c_{13}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{array}\right]\to C=\left[\begin{array}{ccc}0&1&2\\-1&0&1\\-2&-1&0\end{array}\right]\\\\\\\\C^2=\left[\begin{array}{ccc}0&1&2\\-1&0&1\\-2&-1&0\end{array}\right]\cdot\left[\begin{array}{ccc}0&1&2\\-1&0&1\\-2&-1&0\end{array}\right]\\\\\\\\C^2=\left[\begin{array}{ccc}(0\cdot0+1\cdot-1+2\cdot-2)&(0\cdot1+1\cdot0+2\cdot-1)&(0\cdot2+1\cdot1+2\cdot0)\\{(}-1\cdot0+0\cdot-1+1\cdot-2)&(-1\cdot1+0\cdot0+1\cdot-1)&(-1\cdot2+0\cdot1+1\cdot0)\\{(}-2\cdot0+-1\cdot-1+0\cdot-2)&(-2\cdot1+-1\cdot0+0\cdot-1)&(-2\cdot2+-1\cdot1+0\cdot0)\end{array}\right]


C^2=\left[\begin{array}{ccc}-5&-2&1\\-2&-2&-2\\1&-2&-5\end{array}\right]





Para melhor visualização do texto que foi cortado, entre neste link que está entre parênteses:
( http://tex.z-dn.net/?f=C%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D(0%5Ccdot0%2B1%5Ccdot-1%2B2%5Ccdot-2)%26(0%5Ccdot1%2B1%5Ccdot0%2B2%5Ccdot-1)%26(0%5Ccdot2%2B1%5Ccdot1%2B2%5Ccdot0)%5C%5C%7B(%7D-1%5Ccdot0%2B0%5Ccdot-1%2B1%5Ccdot-2)%26(-1%5Ccdot1%2B0%5Ccdot0%2B1%5Ccdot-1)%26(-1%5Ccdot2%2B0%5Ccdot1%2B1%5Ccdot0)%5C%5C%7B(%7D-2%5Ccdot0%2B-1%5Ccdot-1%2B0%5Ccdot-2)%26(-2%5Ccdot1%2B-1%5Ccdot0%2B0%5Ccdot-1)%26(-2%5Ccdot2%2B-1%5Ccdot1%2B0%5Ccdot0)%5Cend%7Barray%7D%5Cright%5D )
Perguntas interessantes