Matemática, perguntado por alicetercetti7, 8 meses atrás

1- considerando a progressão geométrica (3,15,75,375,1875,9375....) determine sua razão e expresse o termo geral dessa sequência em função do seu primeiro termo e de sua razão.

Soluções para a tarefa

Respondido por thaissalessilva2020
1

Resposta:

q (razão) = 5

an = 3 × 5ⁿ⁻¹

Explicação passo-a-passo:

A fórmula dada para o enésimo termo de uma P.G. é:

an = a₁ × qⁿ⁻¹

Onde:

an = enésimo termo (o que se quer descobrir)

a₁ = primeiro termo

q = razão da PG

Para achar o valor de q (razão) basta que divida um termo pelo seu anterior.

Por ex: Ao dividir o segundo termo pelo primeiro, acha-se a razão q.

Ou por exemplo, ao dividir o nono termo pelo oitavo, acha-se a mesma razão q.

Vamos achar a razão q:

A razão q é 5

------------------------------------

O termo geral dessa sequência em função do primeiro termo é:

a₁ = 3

q = 5

O termo geral é:

an = a₁ × qⁿ⁻¹

an = 3 × 5ⁿ⁻¹

Espero que eu tenha ajudado!

Explicação passo-a-passo:

Perguntas interessantes