Matemática, perguntado por lisa2003, 1 ano atrás

1) calcule os radicais a) raiz quadrada de 27 : raiz quadrada de 3 b) raiz cubica de 4 : raiz quadrada de 2 c) raiz quadrada de 2 . raiz quadrada de 10 . raiz cubica de 5. ( ":" = a dividir)​

Soluções para a tarefa

Respondido por ShinyComet
2

a)   \frac{\sqrt{27}}{\sqrt{3}}=

=\frac{\sqrt{3^{3}}\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}}=

=\frac{\sqrt{3^{2}\times3\times3}}{(\sqrt{3})^{2}}=

=\frac{\sqrt{3^{2}\times3^{2}}}{3}=

=\frac{3\times3}{3}=

=\frac{9}{3}=

=3

b)   \frac{\sqrt[3]{4}}{\sqrt{2}}=

=\frac{\sqrt[3]{4}\times\sqrt{2}}{\sqrt{2}\times\sqrt{2}}=

=\frac{\sqrt[3]{2^{2}}\times\sqrt{2}}{(\sqrt{2})^{2}}=

=\frac{2^{\frac{2}{3}}\times2^{\frac{1}{2}}}{2}=

=\frac{2^{\frac{2}{3}+\frac{1}{2}}}{2}=

=\frac{2^{\frac{2\times2}{3\times2}+\frac{3}{2\times3}}}{2}=

=\frac{2^{\frac{4}{6}+\frac{3}{6}}}{2}=

=2^{\frac{7}{6}-1}=

=2^{\frac{7}{6}-\frac{6}{6}}=

=2^{\frac{1}{6}}=

=\sqrt[6]{2}

c)   \sqrt{2}\times\sqrt{10}\times\sqrt[3]{5}=

=\sqrt{2}\times\sqrt{2\times5}\times\sqrt[3]{5}=

=\sqrt{2}\times\sqrt{2}\times\sqrt{5}\times\sqrt[3]{5}=

=(\sqrt{2})^{2}\times5^{\frac{1}{2}}\times5^{\frac{1}{3}}=

=2\times5^{\frac{1}{2}+\frac{1}{3}}=

=2\times5^{\frac{3}{2\times3}+\frac{2}{3\times2}}=

=2\times5^{\frac{3}{6}+\frac{2}{6}}=

=2\times5^{\frac{5}{6}}=

=2\sqrt[6]{5^{5}}=

=2\sqrt[6]{3125}}

Respondido por marcelo7197
3

Explicação passo-a-passo:

Divisão de Radicais :

\mathtt{ A)~ \dfrac{ \sqrt{27} }{ \sqrt{3} } } \\

\mathtt{ \dfrac{ \sqrt{27}}{\sqrt{3}}~=~ \sqrt{ \dfrac{27}{3} } } \\

\mathtt{ \dfrac{ \sqrt{27}}{ \sqrt{ 3} }~=~\sqrt{9} } \\

\mathtt{ \dfrac{ \sqrt{27} }{ \sqrt{3} }~=~\red{3} } \\

__________________________________________________

B)

\mathtt{ B)~\dfrac{ \sqrt[3]{4} }{ \sqrt{2} } } \\

\mathtt{ \dfrac{ \sqrt[3]{4} }{ \sqrt{2} }~=~\dfrac{ 2^{\frac{2}{3} } }{ 2^{\frac{1}{2} } } } \\

\mathtt{ \dfrac{ \sqrt[3]{4} }{ \sqrt{2} } ~=~2^{\frac{2}{3} - \frac{1}{2} } ~=~2^{\frac{4-3}{6} } } \\

\mathtt{ \dfrac{ \sqrt[3]{4} }{ \sqrt{2} }~=~2^{\frac{1}{6}} ~=~\red{ \sqrt[6]{2} } } \\

_________________________________________________

C)

\mathtt{ \sqrt{2} \cdot \sqrt{10} \cdot \sqrt[3]{5} } \\

\mathtt{=~\sqrt{2 \cdot 10} \cdot \sqrt[3]{5} } \\

\mathtt{ =~\sqrt{20} \cdot \sqrt[3]{5} } \\

\mathtt{=~2\sqrt{5} \cdot \sqrt[3]{5} } \\

\mathtt{~=~2\cdot 5^{\frac{1}{2}} \cdot 5^{\frac{1}{3}} } \\

\mathtt{=~2 \cdot 5^{\frac{5}{6}} ~=~2 \cdot \sqrt[6]{5^5} } \\

Espero ter ajudado bastante!)

Perguntas interessantes