Matemática, perguntado por andrezzavytoriamorae, 10 meses atrás

1- calcule
o valor de X:
a) log 2 x=7
b) log (1 sobre 3) ×=2
c) log x 27 = 3
d) log× 125 sobre 8 = 3
e) log 3 1 sobre 9 = ×
f) log 4 1 sobre 32 = ×

2- Usando
a definição, calcule:
logaritimando 25.

B) a base, dados logaritmo igual a 3
e o logaritmando 27.

c) O logaritmo de 7 ma base 7

D) o logaritmo de 1 sobre 25 na base 5

por favor me ajude é urgentee por favor me ajudem ​

Soluções para a tarefa

Respondido por Makaveli1996
1

Oie, Td Bom?!

1. a)

 log_{2}(x)  = 7

  •  log_{a}(x)  = b⇒x = a {}^{b} .

x = 2 {}^{7}

x = 128

b)

 log_{ \frac{1}{3} }(x)  = 2

  •  log_{a}(x)  = b⇒x = a {}^{b} .

x =  (\frac{1}{3} ) {}^{2}

x =  \frac{1}{9}

c)

 log_{x}(27)  = 3

  •  log_{a}(x)  = b⇒x = a {}^{b} .

27 = x {}^{3}

x {}^{3}  = 27

x {}^{3}  = 3 {}^{3}

x =  \sqrt[3]{3 {}^{3} }

x = 3

d)

 log_{x}( \frac{125}{8} )  = 3

  •  log_{a}(x)  = b⇒x = a {}^{b} .

 \frac{125}{8}  = x {}^{3}

x {}^{3}  =  \frac{125}{8}

x {}^{3}  = ( \frac{5}{2} ) {}^{3}

x =  \sqrt[3]{( \frac{5}{2} ) {}^{3} }

x =  \frac{5}{2}

e)

 log_{3}( \frac{1}{9} )  = x

 log_{3}(3 {}^{ - 2} )  = x

  •  log_{a}(a {}^{x} )  = x \: . \:  log_{a}(a) .

 - 2 log_{3}(3)  = x

 - 2 \: . \: 1 = x

 - 2 = x

x =  - 2

f)

 log_{4}( \frac{1}{32} )  = x

 log_{2 {}^{2} }(2 {}^{ - 5} )  = x

  •  log_{a {}^{y} }(b {}^{x} )  =  \frac{x}{y}  \: . \:  log_{a}(b) .

 \frac{ - 5}{2}  \: . \:  log_{2}(2)  = x

 -  \frac{5}{2}  \: . \: 1 = x

 -  \frac{5}{2}  = x

x =  -  \frac{5}{2}

2. a)

 log_{10}(25)  = x

 log_{10}(5 {}^{2} )  = x

  •  log_{a}(b {}^{c} )  = c \: . \:  log_{a}(b) .

2 log_{10}(5)  = x

x = 2 log_{10}(5)

x≈1,39794...

b)

 log_{x}(27)  = 3

  •  log_{a}(x)  = b⇒x = a {}^{b} .

27 = x {}^{3}

x {}^{3} = 27

x {}^{3}  = 3 {}^{3}

x =  \sqrt[3]{3 {}^{3} }

x = 3

c)

 log_{7}(x)  = 7

  •  log_{a}(x)  = b⇒x = a {}^{b} .

x = 7 {}^{7}

x = 823.543

d)

 log_{5}( \frac{1}{25} )  = x

 log_{5}(5 {}^{ - 2} )  = x

  •  log_{a}(a {}^{x} )  = x \: . \:  log_{a}(a) .

 - 2 log_{5}(5)  = x

 - 2 log_{5}(5)  = x

- 2 \: . \: 1 = x

 - 2 = x

x =  - 2

Att. Makaveli1996

Perguntas interessantes