Matemática, perguntado por andrezzavytoriamorae, 9 meses atrás

به
1- calcule
o valor de X:
a) log 2 x=7
b) log (1 sobre 3) ×=2
c) log x 27 = 3
d) log× 125 sobre 8 = 3
e) log 3 1 sobre 9 = ×
f) log 4 1 sobre 32 = ×


2- Usando
a definição, calcule:
logaritimando 25.

B) a base, dados logaritmo igual a 3
e o logaritmando 27.

c) O logaritmo de 7 ma base 7

D) o logaritmo de 1 sobre 25 na base 5

por favor me ajude é urgentee​

Soluções para a tarefa

Respondido por anasaramaia
2

Resposta:

a) log, 27 = x 3^x = 27 3^x = 33 x = 3

b) logs 125 = x 5^x = 125 5^x = 53 x = 3

c) log 10000 = x 10^x = 10000 10^x = 104 X = 4

d) log1)2 32 = X (1/2)^x = 32 1/2^x = 25 2^(-x) = 25 -X = 5 x = -5

e) log 0.01 = x 10 ^ x = 0.01 10 ^ x = 10-2 X = -2

f) log, 0.5 = x 2 ^ x = 0.5 2 ^ x = 1/2 2 ^ x = 2- X = -1

g) log2 v8 = x 2 ^ x = v8 2 ^ x = v23 2 ^ x = 2 ^ (3/2) X = 3/2 h) log4 v32 = x 4 ^ x = v32 4 ^ x = v25 (2) ^ x = 2 ^ (5/2) 2 ^ 2x = 2 ^ (5/2)2x = 5/2 x = 5/4

Vou usar esse símbolo "A" número está elevado a outro! para indicar que um a) x = log25 da base 5 >> 5^x 25 >> 5^x = 52 >> %3D X= 2 b) 3 = log27 da base x >> x^3 = 27 >> x^3 =33 >> X= 3 c) x = log7 da base 7>> 7^x = 7 >> x= 1 d) x = log1/25 da base 5 >> 5^x = 1/25 >> 5^x = 25^-1 >> 5^x = (52)^-1 >> 5^x = 5^-2 >> x= -2

Respondido por Makaveli1996
1

Oie, Td Bom?!

1. a)

 log_{2}(x)  = 7

  •  log_{a}(x)  = b⇒x = a {}^{b} .

x = 2 {}^{7}

x = 128

b)

 log_{ \frac{1}{3} }(x)  = 2

  •  log_{a}(x)  = b⇒x = a {}^{b} .

x =  (\frac{1}{3} ) {}^{2}

x =  \frac{1}{9}

c)

 log_{x}(27)  = 3

  •  log_{a}(x)  = b⇒x = a {}^{b} .

27 = x {}^{3}

x {}^{3}  = 27

x {}^{3}  = 3 {}^{3}

x =  \sqrt[3]{3 {}^{3} }

x = 3

d)

 log_{x}( \frac{125}{8} )  = 3

  •  log_{a}(x)  = b⇒x = a {}^{b} .

 \frac{125}{8}  = x {}^{3}

x {}^{3}  =  \frac{125}{8}

x {}^{3}  = ( \frac{5}{2} ) {}^{3}

x =  \sqrt[3]{( \frac{5}{2} ) {}^{3} }

x =  \frac{5}{2}

e)

 log_{3}( \frac{1}{9} )  = x

 log_{3}(3 {}^{ - 2} )  = x

  •  log_{a}(a {}^{x} )  = x \: . \:  log_{a}(a) .

 - 2 log_{3}(3)  = x

 - 2 \: . \: 1 = x

 - 2 = x

x =  - 2

f)

 log_{4}( \frac{1}{32} )  = x

 log_{2 {}^{2} }(2 {}^{ - 5} )  = x

  •  log_{a {}^{y} }(b {}^{x} )  =  \frac{x}{y}  \: . \:  log_{a}(b) .

 \frac{ - 5}{2}  \: . \:  log_{2}(2)  = x

 -  \frac{5}{2}  \: . \: 1 = x

 -  \frac{5}{2}  = x

x =  -  \frac{5}{2}

2. a)

 log_{10}(25)  = x

 log_{10}(5 {}^{2} )  = x

  •  log_{a}(b {}^{c} )  = c \: . \:  log_{a}(b) .

2 log_{10}(5)  = x

x = 2 log_{10}(5)

x≈1,39794...

b)

 log_{x}(27)  = 3

  •  log_{a}(x)  = b⇒x = a {}^{b} .

27 = x {}^{3}

x {}^{3} = 27

x {}^{3}  = 3 {}^{3}

x =  \sqrt[3]{3 {}^{3} }

x = 3

c)

 log_{7}(x)  = 7

  •  log_{a}(x)  = b⇒x = a {}^{b} .

x = 7 {}^{7}

x = 823.543

d)

 log_{5}( \frac{1}{25} )  = x

 log_{5}(5 {}^{ - 2} )  = x

  •  log_{a}(a {}^{x} )  = x \: . \:  log_{a}(a) .

 - 2 log_{5}(5)  = x

 - 2 log_{5}(5)  = x

- 2 \: . \: 1 = x

 - 2 = x

x =  - 2

Att. Makaveli1996

Perguntas interessantes