1. Calcule o valor de cada potência.
i. 7
2
ii. 9
0
iii. −106
iv. (−3)
2
v. (−3)
4
vi. (−0,3)
4
vii. (−10)
6
viii. (
3
2
)
2
ix. 20−1
x. (
3
2
)
−2
Soluções para a tarefa
não consegui entender mas vou lhe ajudar um pouco \ entender a potenciação aí vai um guia completo
Para compreender melhor, acompanhe os exemplos abaixo:
⇒ 54 = 5 . 5 . 5 . 5 = 625
5 = base
4 = expoente
5 . 5 . 5 . 5 = produto de fatores
625 = potência
Como o expoente é 4, tivemos que repetir a base, que é 5 quatro vezes, em um produto.
⇒ 102 = 10 . 10 = 100
10 = base
2 = expoente
10 . 10 = produto de fatores
100 = potência
Como o expoente é 2, tivemos que repetir a base, que é 10 duas vezes, em um produto.
Tipos de potenciação
Base real e expoente inteiro
Quando o expoente é inteiro, significa que ele pode possuir número negativo ou positivo.
⇒ Expoente positivo: Quando a base for um número real e o expoente for positivo, obteremos a potência efetuando o produto dos fatores. Acompanhe alguns exemplos:
2+2 = 2 . 2 = 4
0,3+3 = 0,3 . 0,3 . 0,3 = 0,027
(½ )+2 = ½ . ½ = ¼
⇒ Expoente negativo: Se o expoente é negativo, devemos fazer o inverso do número, que é trocar numerador com denominador, para o expoente passar a ser positivo. Observe alguns exemplos:
0,3 – 3 = (3)-3 = (10)+3 = 10 . 10 . 10 = 1000 = 37,037
(10)-3 (3)+3 3 . 3 . 3 27
(½ )-2 = (2/1)+2 = 2 . 2 = 4
⇒ Expoente igual a 1
Quando o expoente for igual a um positivo, a potência será o próprio número da base. Veja os exemplos abaixo:
a1 = a
21 = 2
41 = 4
1001 = 100
⇒ Expoente igual a 0
Se o expoente for 0, a reposta referente à potência sempre será 1. Acompanhe os exemplos:
a0 = 1
= 1
250 = 1
Propriedades da potenciação
Resposta:
ou
que é
.
Explicação passo-a-passo: