Matemática, perguntado por gmarotzkyp957oj, 9 meses atrás

1) Calcule o domínio das seguintes funções
a)y=5/x+4
b)f(x)=Raiz de 2x+6
c)f(x)=Raiz de 2x+5/x-2

Soluções para a tarefa

Respondido por FehJA
3

Oi, tudo bem?!

O domínio é o subconjunto de ℝ no qual são possíveis as operações indicadas em y= f(x), então sempre fique atento(a) às restrições!

a) Devemos impor que o denominador não seja nulo:

x+4 ≠ 0

x ≠ -4

Portanto, D(f) = { x ∈ ℝ | x ≠ -4 } = ℝ - {-4}.

b) Em ℝ, o radicando de uma raiz de índice par não pode ser negativo:

2x + 6 ≥ 0

2x ≥ -6

x ≥ -6/2

x ≥ -3

Portanto, D(f) = { x ∈ ℝ | x ≥ -3} = [-3; +∞[.

c) aqui não entendi se todos os valores estavam sob a raiz, então considerei a expressão como sendo:

f(x) \:  =  \frac{ \sqrt{2x \:  +  \: 5} }{ \sqrt{x  \:  -  \: 2} }

Dessa forma, temos as seguintes restrições:

1) Com relação ao numerador ( √2x+5 ): o radicando de uma raiz de índice par não pode ser negativo. x 0

2x + 5 ≥ 0

2x ≥ -5

x ≥ -5/2

2) Com relação ao denominador (√x-2): por ser denominador não pode ser nulo e o radicando de uma raiz de índice par não pode ser negativo. x > 0

x - 2 > 0

x > 2

Efetuando a intersecção de 1 e 2, obtemos:

D(f) = {x ∈ ℝ | x > 2} = ] 2; +∞[.

Espero ter te ajudado, bons estudos! (◠‿◕)

Perguntas interessantes