Matemática, perguntado por josy1003felix, 1 ano atrás

1) Calcule o acréscimo ∆v para: 

a. y = 2x² − 6x + 5 ( x = 3; ∆x = 0,01). 

b. y = 6x² − 4 ( x = 2; ∆x = 0,001). 

Soluções para a tarefa

Respondido por andresccp
1
y=2x^2-6x+5\\\\\boxed{x=3 ;\Delta x=0,01}

temos que
\Delta_V =f(x+\Delta x) - f(x)\\\ \Delta_v =f(3+0,01) - f(3)\\\\\Delta_V=f(3,01) - f(3)

calculando as funções
f(3,01) = 2*(3,01)^2-6*(3,01)+5\\\\f(3,01) = 5,0602
......................................................................
................................................................
f(3) = 2*3^2 -6*3 +5\\\\f(3) =5

então:
\Delta_V=5,0602-5\\\Delta_V=0,0602

***********************************************************************************************
********************************************************************************************
y=6x^2-4\\\\\boxed{x=2;\Delta x=0,001}

;
\Delta_V =f(x+\Delta x) - f(x)\\\\\Delta_V =f(2+0,001) - f(2)\\\\ \Delta_V = f(2,001) - f(2)

calculando s funções
f(2,001)=6*(2,001)^2 -4\\\\f(2,001)=20,0240\\\\\\\\f(2) = 6*2^2-4\\\\f(2)=20

a o acréscimo será
\Delta_V= 20,0240-20  \approx0,240

josy1003felix: Muito obrigada !!! :D
Perguntas interessantes