Matemática, perguntado por genecyalmeida41, 4 meses atrás

1) Ao calcular a exponencial f(x) = 2* e f(4) o valor encontrado foi​

Anexos:

Soluções para a tarefa

Respondido por CyberKirito
2

\large\boxed{\begin{array}{l}\rm1)~ f(x)=2^x\\\rm f(4)=2^4\\\rm f(4)=16\end{array}}

\large\boxed{\begin{array}{l}\rm 2)\\\rm f(x)=49^x\\\rm f(1,5)=f\bigg(\dfrac{3}{2}\bigg)\\\\\rm f\bigg(\dfrac{3}{2}\bigg)=49^{\frac{3}{2}}\\\\\rm f\bigg(\dfrac{3}{2}\bigg)=(7^2)^{\frac{3}{2}}\\\\\rm f\bigg(\dfrac{3}{2}\bigg)=7^{\backslash\!\!\!2\cdot\frac{3}{\backslash\!\!\!2}}\\\\\rm f\bigg(\dfrac{3}{2}\bigg)=7^3\\\\\rm f\bigg(\dfrac{3}{2}\bigg)=343\end{array}}

\large\boxed{\begin{array}{l}\rm 3)~trata-se\,do\,gr\acute afico\,de\\\rm uma\,func_{\!\!,}\tilde ao\,exponencial\\\rm cuja\,lei\,descobriremos\,a\,seguir.\\\rm A(0,1)~~B(1,2)~~C(2,4)\\\rm f(x)=m\cdot a^x\\\rm f(0)=m\cdot a^0\\\rm m=1\\\rm f(1)=m\cdot a^1\\\rm 2=1\cdot a\\\rm a=2\\\rm f(x)=2^x\longrightarrow lei\,da\,da\,func_{\!\!,}\tilde ao\end{array}}

Perguntas interessantes