Matemática, perguntado por mozarth11, 1 ano atrás

[(1/5^(-2/3) - (2^12/2^10)] - {[(0,333...)^-5/2)/ \/3] - (5^5/3 / ∛5)} =


emilyk: V3 seria raiz de 3?
mozarth11: \/3 SIGNIFICA RAIZ QUADRADA DE 3

Soluções para a tarefa

Respondido por emilyk
2
[( \frac{1}{5}^{ -\frac{2}{3}}) - (\frac{2^{12} }{2^{10} })]-{[(0,333...^{ -\frac{5}{2}}: \sqrt{3}]-5^{ \frac{5}{3}} : \sqrt[3]{5})]}=
[ \frac{5}{1}^{ \frac{2}{3}}-2^2]-[ \frac{1}{3} ^{ -\frac{5}{2}}: \sqrt{3}]-5^{ \frac{5}{3}}: \sqrt[3]{5}=
[ \sqrt[3]{25}-4]-[3^{ \frac{4}{2}}]-5 ^{ \frac{4}{3}} =  \\  [\sqrt[3]{25}-4] -9- \sqrt[3]{625} =21-9- \sqrt[3]{625}= 12- \sqrt[3]{625} 
Perguntas interessantes