Matemática, perguntado por nicolasncg, 1 ano atrás

07-considerando log 2 = 0,301 log 3 = 0,477 e log 5 = 0,699 calcule:

a) log 6

b) log 18

c) log 50

d) log 32

e) 120

Soluções para a tarefa

Respondido por Usuário anônimo
7

Explicação passo-a-passo:

a) Lembre-se que:

\text{log}_{a}~(b\cdot c)=\text{log}_{a}~b+\text{log}_{a}~c

a) \text{log}~6=\text{log}~(2\cdot3)

\text{log}~6=\text{log}~2+\text{log}~3

\text{log}~6=0,301+0,477

\text{log}~6=0,778

b) Lembre-se que:

\text{log}_{a}~b^{n}=n\cdot\text{log}_{a}~b

\text{log}~18=\text{log}~(2\cdot3^2)

\text{log}~18=\text{log}~2+2\cdot\text{log}~3

\text{log}~18=0,301+2\cdot0,477

\text{log}~18=0,301+0,954

\text{log}~18=1,255

c) \text{log}~50=\text{log}~(2\cdot5^2)

\text{log}~50=\text{log}~2+2\cdot\text{log}~5

\text{log}~50=0,301+2\cdot0,699

\text{log}~50=0,301+1,398

\text{log}~50=1,699

d) \text{log}~32=\text{log}~2^4

\text{log}~32=4\cdot\text{log}~2

\text{log}~32=4\cdot0,301

\text{log}~32=1,204

e) \text{log}~120=\text{log}~(2^3\cdot3\cdot5)

\text{log}~120=3\cdot\text{log}~2+\text{log}~3+\text{log}~5

\text{log}~120=3\cdot0,301+0,477+0,699

\text{log}~120=0,903+1,176

\text{log}~120=2,079

Perguntas interessantes