Matemática, perguntado por ms1787214, 1 ano atrás

02- Calcule a distancia entre o ponto A(5,7) e a reta r: 4x - 3y + 2=0

Soluções para a tarefa

Respondido por jjzejunio
3
Eaew!!!


Resolução!!!!



Fórmula:


d =  \frac{ |ax + by + c| }{ \sqrt{ {a}^{2}  +  {b}^{2} } }


A(5,7) = (x,y)


X = 5, Y = 7


r: 4x - 3y + 2 = 0 → ax + by + c = 0


a = 4
b = -3
c = 2



Jogando na fórmula:


d =  \frac{ |4.5 + ( - 3).7 + 2| }{ \sqrt{ {4}^{2}  +  {( - 3)}^{2} } }  \\  \\ d =  \frac{ |20 - 21 + 2| }{ \sqrt{16 + 9} }  \\  \\ d =  \frac{ |1| }{ \sqrt{25} }  \\  \\ d =  \frac{1}{5}


A distância é de 1/5.


★Espero ter ajudado!! tmj.

ms1787214: responde essa
ms1787214: obtenha as coodernadas do centro e a medida do raio da circunferencia : x2 + y2 - 10x - 4y + 25=0
jjzejunio: Poste a questão em seu perfil.
ms1787214: postei la responde la obr
Perguntas interessantes