01-Simplifique as expressao e calcule seu valor numerico para x=99
a)(x^3-6x^2 +9x / x^2 - 9) .(x+3 / x)
02-Qual a forma mais simples de escrever as expressoes
a)(1/b - 1/a).(a^2 + ab / a^2 - b^2)
b) b+b^2+b+1
c)1/4 x^2 -4/25 y^2
03-Considere a expressao algebrica (x+1/x-1) -1/1-(x+1/1-x) , x≠0 e x≠1 determine o valor dessa expressao para x=2/5
Me ajudem PF..
Soluções para a tarefa
Respondido por
13
Vamos simplificar as expressões primeiro:
a)
![\dfrac{x^3 - 6x^2 + 9x}{x^2 - 9} * \dfrac{x+3}{x} \\ \\ \\ \dfrac{x(x \not- 3)(x -3)}{(x \not- 3)(x + 3)} * \dfrac{x+3}{x} \\ \\ \\ \dfrac{\notx(x -3)}{(x \not+ 3)} * \dfrac{x \not+3}{\notx} \\ \\ \\ => x - 3 \dfrac{x^3 - 6x^2 + 9x}{x^2 - 9} * \dfrac{x+3}{x} \\ \\ \\ \dfrac{x(x \not- 3)(x -3)}{(x \not- 3)(x + 3)} * \dfrac{x+3}{x} \\ \\ \\ \dfrac{\notx(x -3)}{(x \not+ 3)} * \dfrac{x \not+3}{\notx} \\ \\ \\ => x - 3](https://tex.z-dn.net/?f=+%5Cdfrac%7Bx%5E3+-+6x%5E2+%2B+9x%7D%7Bx%5E2+-+9%7D++%2A++%5Cdfrac%7Bx%2B3%7D%7Bx%7D++%5C%5C++%5C%5C++%5C%5C++%5Cdfrac%7Bx%28x+%5Cnot-+3%29%28x+-3%29%7D%7B%28x+%5Cnot-+3%29%28x+%2B+3%29%7D+%2A++%5Cdfrac%7Bx%2B3%7D%7Bx%7D++%5C%5C++%5C%5C++%5C%5C+%5Cdfrac%7B%5Cnotx%28x+-3%29%7D%7B%28x+%5Cnot%2B+3%29%7D+%2A++%5Cdfrac%7Bx+%5Cnot%2B3%7D%7B%5Cnotx%7D++%5C%5C++%5C%5C++%5C%5C+%3D%26gt%3B+x+-+3)
Substituímos o valor dado para x = 99
x - 3 => 99 - 3 => 96
====
2)
a)
![(\dfrac{1}{b} - \dfrac{1}{a}) * ( \dfrac{a^2 +ab}{a^2 - b^2}) \\ \\ \\ \dfrac{(a- b)}{ab} * (\dfrac{a(a\not + b)}{(a - b)(a \not+ b)}) \\ \\ \\ \dfrac{(a\not- b)}{\not ab} * (\dfrac{\not a}{(a\not - b)}) \\ \\ \\ => \dfrac{1}{b} (\dfrac{1}{b} - \dfrac{1}{a}) * ( \dfrac{a^2 +ab}{a^2 - b^2}) \\ \\ \\ \dfrac{(a- b)}{ab} * (\dfrac{a(a\not + b)}{(a - b)(a \not+ b)}) \\ \\ \\ \dfrac{(a\not- b)}{\not ab} * (\dfrac{\not a}{(a\not - b)}) \\ \\ \\ => \dfrac{1}{b}](https://tex.z-dn.net/?f=+%28%5Cdfrac%7B1%7D%7Bb%7D+-++%5Cdfrac%7B1%7D%7Ba%7D%29+%2A+%28+%5Cdfrac%7Ba%5E2+%2Bab%7D%7Ba%5E2+-+b%5E2%7D%29++%5C%5C++%5C%5C++%5C%5C++%5Cdfrac%7B%28a-+b%29%7D%7Bab%7D+%2A+%28%5Cdfrac%7Ba%28a%5Cnot+%2B+b%29%7D%7B%28a+-+b%29%28a+%5Cnot%2B+b%29%7D%29++%5C%5C++%5C%5C++%5C%5C++%5Cdfrac%7B%28a%5Cnot-+b%29%7D%7B%5Cnot+ab%7D+%2A+%28%5Cdfrac%7B%5Cnot+a%7D%7B%28a%5Cnot+-+b%29%7D%29++%5C%5C++%5C%5C++%5C%5C++%3D%26gt%3B+%5Cdfrac%7B1%7D%7Bb%7D+)
====
![b) \\ \\ b + b^2 + b + 1 \\ \\=> b^2 + 2b + 1 b) \\ \\ b + b^2 + b + 1 \\ \\=> b^2 + 2b + 1](https://tex.z-dn.net/?f=b%29+%5C%5C++%5C%5C+b+%2B+b%5E2+%2B+b+%2B+1+%5C%5C++%5C%5C%3D%26gt%3B++b%5E2+%2B+2b+%2B+1)
====
![c) \\ \\ \dfrac{1}{4}x^2 - \dfrac{4}{25}y^2 \\ \\ \\ \dfrac{x^2}{4}- \dfrac{4y^2}{25} c) \\ \\ \dfrac{1}{4}x^2 - \dfrac{4}{25}y^2 \\ \\ \\ \dfrac{x^2}{4}- \dfrac{4y^2}{25}](https://tex.z-dn.net/?f=+c%29+%5C%5C++%5C%5C+%5Cdfrac%7B1%7D%7B4%7Dx%5E2+-++%5Cdfrac%7B4%7D%7B25%7Dy%5E2+%5C%5C++%5C%5C++%5C%5C++%5Cdfrac%7Bx%5E2%7D%7B4%7D-++%5Cdfrac%7B4y%5E2%7D%7B25%7D+++)
MMC de 4, 25 = 100
![=> \dfrac{25x^2 - 16y^2}{100} => \dfrac{25x^2 - 16y^2}{100}](https://tex.z-dn.net/?f=+%3D%26gt%3B+%5Cdfrac%7B25x%5E2+-+16y%5E2%7D%7B100%7D+)
=========
3)
![\dfrac{x + 1}{x - 1} - \dfrac{1}{1} - \dfrac{x + 1}{1-x} \dfrac{x + 1}{x - 1} - \dfrac{1}{1} - \dfrac{x + 1}{1-x}](https://tex.z-dn.net/?f=+%5Cdfrac%7Bx+%2B+1%7D%7Bx+-+1%7D+-++%5Cdfrac%7B1%7D%7B1%7D+-++%5Cdfrac%7Bx+%2B+1%7D%7B1-x%7D+)
Simplificar e depois substituir o valor dado para x = 2/5
![\dfrac{x + 1}{x - 1} - 1 - \dfrac{x + 1}{1-x} \\ \\ \\\dfrac{x + 1}{x - 1} - \dfrac{2}{x - 1} \\ \\ \\ => \dfrac{x + 3}{x - 1} \\ \\ \\ substituir\ o \ valor \ de \ x = \dfrac{2}{5} \dfrac{x + 1}{x - 1} - 1 - \dfrac{x + 1}{1-x} \\ \\ \\\dfrac{x + 1}{x - 1} - \dfrac{2}{x - 1} \\ \\ \\ => \dfrac{x + 3}{x - 1} \\ \\ \\ substituir\ o \ valor \ de \ x = \dfrac{2}{5}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx+%2B+1%7D%7Bx+-+1%7D+-+1+-+%5Cdfrac%7Bx+%2B+1%7D%7B1-x%7D++%5C%5C++%5C%5C++%5C%5C%5Cdfrac%7Bx+%2B+1%7D%7Bx+-+1%7D+-+%5Cdfrac%7B2%7D%7Bx+-+1%7D+%5C%5C++%5C%5C++%5C%5C++%3D%26gt%3B+%5Cdfrac%7Bx+%2B+3%7D%7Bx+-+1%7D++%5C%5C++%5C%5C++%5C%5C+substituir%5C+o+%5C+valor+%5C++de+%5C+x+%3D++%5Cdfrac%7B2%7D%7B5%7D++)
![\dfrac{ \dfrac{2}{5} + 3}{ \dfrac{2}{5} - 1} \\ \\ \\ \dfrac{ \dfrac{17}{5} }{ \dfrac{-3}{5}} \dfrac{ \dfrac{2}{5} + 3}{ \dfrac{2}{5} - 1} \\ \\ \\ \dfrac{ \dfrac{17}{5} }{ \dfrac{-3}{5}}](https://tex.z-dn.net/?f=%5Cdfrac%7B+%5Cdfrac%7B2%7D%7B5%7D++%2B+3%7D%7B+%5Cdfrac%7B2%7D%7B5%7D+-+1%7D+%5C%5C++%5C%5C++%5C%5C++%5Cdfrac%7B+%5Cdfrac%7B17%7D%7B5%7D+%7D%7B+%5Cdfrac%7B-3%7D%7B5%7D%7D+)
A fração que esta dividindo passa multiplicando invertendo a fração:
![\dfrac{17}{5} * -\dfrac{5}{3} \\ \\ \\ - \dfrac{85}{15} \ \dfrac{\div}{\div} \ \dfrac{3}{3} \ => \ -\dfrac{17}{5} \dfrac{17}{5} * -\dfrac{5}{3} \\ \\ \\ - \dfrac{85}{15} \ \dfrac{\div}{\div} \ \dfrac{3}{3} \ => \ -\dfrac{17}{5}](https://tex.z-dn.net/?f=+%5Cdfrac%7B17%7D%7B5%7D++%2A++-%5Cdfrac%7B5%7D%7B3%7D++%5C%5C++%5C%5C++%5C%5C++-+%5Cdfrac%7B85%7D%7B15%7D++%5C+%5Cdfrac%7B%5Cdiv%7D%7B%5Cdiv%7D+%5C++%5Cdfrac%7B3%7D%7B3%7D+%5C+%3D%26gt%3B++%5C+-%5Cdfrac%7B17%7D%7B5%7D++)
a)
Substituímos o valor dado para x = 99
x - 3 => 99 - 3 => 96
====
2)
a)
====
====
MMC de 4, 25 = 100
=========
3)
Simplificar e depois substituir o valor dado para x = 2/5
A fração que esta dividindo passa multiplicando invertendo a fração:
Perguntas interessantes
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
História,
1 ano atrás
Química,
1 ano atrás