01) Represente em forma de matriz os sistemas abaixo:
a)
x + 3y - 2 = 0
2x + y + z = 1
3x – y +z = 3
b)
2x + y + z = 3
- 2x + 2y – z = 0
3x + y + z = 1
c)
2x + 4y – 2z = 2
- 2x – 2y + 2z = 1
5x + 4y - 3z = 6
Soluções para a tarefa
Explicação passo-a-passo:
1 3 -2 0
2 1 1 1
3 -1 1 3
D = 1 + 9 + 4 + 6 + 1 - 6
D = 15
0 3 -2
1 1 1
3 -1 1
Dx = 0 + 9 + 2 + 6 + 0 - 3
x = Dx/D = 14/15
1 0 -2
2 1 1
3 3 1
Dy = 1 + 0 - 12 + 6 - 3 + 0
y = Dy/D = -8/15
1 3 0
2 1 1
3 -1 3
Dz = 3 + 9 + 0 + 0 + 1 - 18
z = Dz/D = -1/3
b)
2 1 1 3
-2 2 -1 0
3 1 1 1
D = 4 - 3 - 2 - 6 + 2 + 2
D = -3
3 1 1
0 2 -1
1 1 1
Dx = 6 - 1 + 0 - 2 + 3 + 0
x = Dx/D = -2
2 3 1
-2 0 -1
3 1 1
Dy = 0 - 9 - 2 + 0 + 2 + 6
y = Dy/D = 1
2 1 3
-2 2 0
3 1 1
Dz = 4 + 0 - 6 - 18 + 0 + 2
z = Dz/D = 6
c)
2 4 -2 2
-2 -2 2 1
5 4 -3 6
D = 12 + 40 + 16 - 20 - 16 - 24
D = 8
2 4 -2
1 -2 2
6 4 -3
Dx = 12 + 48 - 8 - 24 - 16 + 12
x = Dx/D = 3
2 2 -2
-2 1 2
5 6 -3
Dy = -6 + 20 + 24 + 10 - 24 - 12
y = Dy/D = 1,5
2 4 2
-2 -2 1
5 4 6
Dz = -24 + 20 - 16 + 20 - 8 + 48
z = Dz/D = 5