Matemática, perguntado por Krikor, 1 ano atrás

Resolva a seguinte integral:

\mathsf{\displaystyle\int \dfrac{dx}{3 + x^{2}}}

Soluções para a tarefa

Respondido por superaks
1
Olá Krikor.

Identidade utilizada:

\star~~\boxed{\boxed{\mathsf{\dfrac{d}{dx}~b\cdot arctan(ax)=\dfrac{ba}{(ax)^2+1}}}}

________________________

Organizando e resolvendo a integral

\mathsf{\displaystyle\int \dfrac{1}{x^2+3}~dx=\int\dfrac{1}{3\cdot\Big(\dfrac{x^2}{3}+1\Big)}~dx=\mathsf{\displaystyle\dfrac{1}{3}\cdot\int\dfrac{1}{\dfrac{x^2}{3}+1}}~dx}}


Pela identidade acima fazendo \mathsf{a^2=\frac{1}{3}} e \mathsf{b=1} temos:


\mathsf{\dfrac{d}{dx}~arctan(\dfrac{x}{\sqrt{3}})=\dfrac{\dfrac{1}{\sqrt{3}}}{\dfrac{x}{3}+1}}\\\\\\\\\mathsf{\dfrac{d}{dx}~\sqrt{3}\cdot arctan(\dfrac{x}{\sqrt{3}})=\dfrac{1}{\dfrac{x^2}{3}+1}}}

Integrando em ambos os lados, temos:

\mathsf{\displaystyle\int\dfrac{1}{\dfrac{x^2}{3}+1}~dx=\displaystyle\int\dfrac{d}{dx}~\sqrt{3}\cdot arctan(\dfrac{x}{\sqrt{3}})~dx}\\\\\\\\\mathsf{\displaystyle\int\dfrac{1}{\dfrac{x^2}{3}+1}~dx =\sqrt{3}\cdot arctan(\dfrac{x}{\sqrt{3}})}

Multiplique ambos os lados por \frac{1}{3}


\mathsf{\displaystyle \dfrac{1}{3}\cdot\int \dfrac{1}{\dfrac{x^2}{3}+1}~dx=\dfrac{\sqrt{3}}{3}\cdot arctan(\dfrac{x}{\sqrt{3}})}\\\\\\\mathsf{\displaystyle\int\dfrac{1}{x^2+3}~dx=\dfrac{\sqrt{3}}{3}\cdot arctan(\dfrac{x}{\sqrt{3}})+C}


Dúvidas? comente.



Krikor: Muito obrigado! :)
superaks: Disponha !
Respondido por CyberKirito
0

Integrais que produzem funções trigonométricas inversas

\boxed{\boxed{\boxed{\mathsf{\displaystyle\int\frac{du}{{a}^{2}+{u}^{2}}} =  \dfrac{1}{a}arctg( \frac{u}{a}) + c}}}

\displaystyle\mathsf{\int\dfrac{dx}{3+{x}^{2}}=\dfrac{1}{\sqrt{3}}arctg(\dfrac{x}{\sqrt{3}})+c}

Perguntas interessantes