Matemática, perguntado por TALITA1235, 1 ano atrás

O valor da integral é:

Anexos:

Soluções para a tarefa

Respondido por ArthurPDC
7
Vamos resolver primeiro a integral de dentro, a qual está entre colchetes:

I_1=\displaystyle\int^{x}_{x^2}dy=[y]^{x}_{x^2}\\\\
I_1=x-x^2

Agora podemos resolver a integral "de fora":

I_2=\displaystyle\int^{1}_{0}\left[\displaystyle\int_{x^2}^{x}dy\right]dx
=\displaystyle\int^{1}_{0}(x-x^2)dx\\\\
I_2=\displaystyle\int^{1}_{0}x\,dx-\displaystyle\int^{1}_{0}x^2\,dx\\\\
I_2=\left[\dfrac{x^2}{2}\right]^{1}_{0}-\left[\dfrac{x^3}{3}\right]^{1}_{0}\\\\
I_2=\left[\left(\dfrac{1^2}{2}\right)-\left(\dfrac{0^2}{2}\right)\right]-\left[\left(\dfrac{1^3}{3}\right)-\left(\dfrac{0^3}{3}\right)\right]

I_2=\left[\left(\dfrac{1}{2}\right)-\left(\dfrac{0}{2}\right)\right]-\left[\left(\dfrac{1}{3}\right)-\left(\dfrac{0}{3}\right)\right]\\\\
I_2=\left[\left(\dfrac{1}{2}\right)-0\right]-\left[\left(\dfrac{1}{3}\right)-0\right]\\\\
I_2=\left(\dfrac{1}{2}\right)-\left(\dfrac{1}{3}\right)=\dfrac{3-2}{6}\\\\
\boxed{I_2=\dfrac{1}{6}}\Longrightarrow\text{Letra }\bold{D}
Respondido por planoclaro
0

Resposta:

reposta: 1/6 corrigido pelo AVA.

Explicação passo a passo:

Perguntas interessantes