Física, perguntado por ludmilacristina5933, 6 meses atrás

me ajudem quero a conta!!!!​

Anexos:

ludmilacristina5933: agora fiquei confusa
IanFauzi: O que fiz, inicialmente, foi errado, pois a fórmula é "S-S0 = + V0.t + a/2.t^2", sendo que calculei o Δt, fator que não está presente nela.
ludmilacristina5933: mesmo assim nao entendi nada do que vc fez
ludmilacristina5933: mesmo assim nao entendi nada do que vc fez
IanFauzi: Logo, se fizer o gráfico Vxt, terá a área, que representará o mesmo valor, em módulo, do espaço percorrido entre os instantes supramencionados.
IanFauzi: Vou tentar construir um gráfico aqui e te mostro, daqui a pouco lhe respondo, ok.
ludmilacristina5933: ok mas nao e so fazer os cálculo por etapa que da o resultado?
IanFauzi: O móvel não está em MU, mas freando em MUV, já que a aceleração possui sinal negativo, isto é, a análise é + profunda...
IanFauzi: Ludmila, havia considerado, erroneamente, que a velocidade inicial, no tempo t=2s, era igual a 10 m/s, já que, na verdade, tal velocidade não se refere a esse instante, mas sim quando o tempo t é igual a 0. Por isso, errei, gerando uma inconveniente confusão. No entanto, já postei a resposta detalhada abaixo, se puder, seria interessante que colocasse o enunciado em modo texto, na sua pergunta, permitindo ajudar mais pessoas com dúvida nesse exercício. Abs!
ludmilacristina5933: obrigada pela a resposta

Soluções para a tarefa

Respondido por IanFauzi
1

É possível resolver esse exercício de duas formas:

Primeira maneira:

V= V_{0} + a.t

O exercício já forneceu a função horária da velocidade:

V= 10 - 2.t

Logo, de modo comparativo, já é possível obter que:

V_{0} = 10 m/s\\a= -2 m/s

Porém, tal velocidade inicial encontrada corresponde a quando o tempo t=0. Então, para o tempo t = 2s, a nova velocidade inicial será:

V= 10 - 2.t\\V_{t=2s} = 10 - 2.2\\V_{t=2s} = 6 m/s

Nesse sentido, se, de 2s a 3s, passará 1s, basta substituir os respectivos valores na função horária da posição de um Movimento Uniformemente Variado (MUV) :

S= S_{0} + V_{0}.t + \frac{a}{2}. t^2\\S-S_{0}= V_{0}.t + \frac{a}{2}. t^2\\t= 1s\\V_{0}= 6 m/s

Portanto:

ΔS= 6.1 -2/2.1

ΔS= 5 m

Segunda maneira:

V= 10 - 2.t

No tempo 2s:

V= 10 - 2.2\\V= 10 - 4\\V= 6 m/s

No tempo 3s:

V= 10 - 2.3\\V= 10 - 6\\V= 4 m/s

Ao se construir um gráfico V x t, perceberá que o valor em módulo da área do trapézio formado corresponderá ao mesmo do espaço percorrido. Por conseguinte:

(B + b). h/2 = ΔS

B= 6

b= 4

h= 3-2=1

Logo:

(6+4).1/2 = ΔS

ΔS= 10/2

ΔS= 5 m

Anexos:
Perguntas interessantes