Matemática, perguntado por Camilly2k, 11 meses atrás

Calcular a área total do prisma??

Anexos:

Soluções para a tarefa

Respondido por bernborgess
7

Resposta:

At = 190 cm²

Explicação passo-a-passo:

Área total do prisma é a soma de todos estes retângulos.

Base & tampa = 5*3

Frente & fundo = 5*10

Lado direito & lado esquerdo = 3*10

Sendo duas vezes cada retângulo, multiplicaremos por dois essa área e somaremos tudo junto.

2(5*3)+2(5*10)+2(3*10)

2(15)+2(50)+2(30)

30+100+60

At=190cm²


Camilly2k: A minha deu 230 com essa fórmula
At= 2.Ab+Al
Camilly2k: Pq?
bernborgess: Essa formula é pra um prima de base quadrada. No caso, a base é um retângulo e a área lateral é feita por partes, somando cada retângulo formado.
Respondido por oMentor
7

Temos que calcular por parte. Observe:

1º) Vamos calcular a área das bases (inferior e superior). Sabemos que as duas dimensões da base são:

b = base = 5 cm

h = altura = 3 cm

Como temos 2 bases, o valor encontrado é multiplicado por 2. Chamaremos de Área da Base (Ab). Par isso, temos a fórmula:

Ab = 2×b×h

Ab = 2×5×3

Ab = 30 cm²

2º) Temos que calcular a lateral do prisma. Para isso, por se tratar também de um retângulo, utiliza-se a mesma fórmula. Temos as duas dimensões da lateral:

b₁ = base 1 = 5 cm

b₂ = base 2 = 3 cm

h = altura = 10 cm

Como temos 2 laterais com base 3 cm e 2 com base 5 cm, temos que multiplicar por 2 o resultado da área encontrado. Chamaremos de Área Lateral 1 e 2 (Al):

Base 1: 5 cm

altura: 10 cm

Al₁ = 2×b₁×h

Al₁ = 2×5×10

Al₁ = 100 cm²

Base 2: 3 cm

altura: 10 cm

Al₂ = 2×b₂×h

Al₂ = 2×3×10

Al₂ = 60 cm²

Para encontrar a área total (At), basta somar as 3 áreas encontradas:

At = Ab + Al₁ + Al₂

At = 30 + 100 + 60

At = 190 cm²

A área total do prisma é de 190 cm²

Bons estudos!


Camilly2k: Olá
Camilly2k: O meu tá dando 15
Camilly2k: 150*
Perguntas interessantes