Matemática, perguntado por Viniaugusto, 1 ano atrás

Alguem me ajuda
 4^{X} *  8^{Y} =  \frac{1}{4}  <br /><br />
 9^{X}*27 ^{2Y}  = 3

Soluções para a tarefa

Respondido por korvo
1
AE manoo,

no sistema de equações exponenciais,

\begin{cases}4^x\cdot8^y= \dfrac{1}{4}~~(i)\\ 9^x\cdot27^{2y}=3~~(ii) \end{cases}

podemos usar as propriedades da exponenciação..

a^m\cdot a^n\Rightarrow a^{m+n}\\\\
 \dfrac{1}{a} \Rightarrow  \dfrac{1}{a^1}\Rightarrow a^{-1}\\\\
(a^m)^n\Rightarrow a^{m\cdot n}

_____________


\Rightarrow\begin{cases}(2^2)^x\cdot(2^3)^y= \dfrac{1}{2^2}~~(i)\\
(3^2)^x\cdot(3^3)^{2y}=3^1~~(ii) \end{cases}\\\\\\
\Rightarrow\begin{cases}2^{2x}\cdot2^{3y}=2^{-2}~~(i)\\
3^{2x}\cdot3^{6y}=3^1~~(ii)\end{cases}

\Rightarrow\begin{cases}2^{2x+3y}=2^{-2}~~(i)\\
3^{2x+6y}=3^1~~(ii)\end{cases}\\\\\\
\Rightarrow\begin{cases}\not2^{2x+3y}=\not2^{-2}~~(i)\\
\not3^{2x+6y}=\not3^1~~(ii)\end{cases}\\\\\\
\begin{cases}2x+3y=-2~~(i)~~(\times~por~-1~e~soma)\\
2x+6y=1~~(ii)\end{cases}

+\begin{cases}-2x-3y=2~~(i)\\
~~2x+6y=1~~(ii)\end{cases}\\
~~~~~~------\\
~~~~~~~~~~~~~~3y=3\\
~~~~~~~~~~~~~~y=3/3\\
~~~~~~~~~~~~~~y=1\\\\\\
2x+6y=1\\
2x+6\cdot1=1\\
2x+6=1\\
2x=1-6\\
2x=-5\\\\
x=- \dfrac{5}{2}

Portanto a solução será..

\Large\boxed{\text{S}=\left\{\left(- \dfrac{5}{2},~1\right)\right\}}

Viniaugusto: Opa, mt obg :D
Perguntas interessantes