Matemática, perguntado por josianjunio, 1 ano atrás

19- Sejam r1 e r2 as raízes da equação de 2º grau 2x² - 6x + 3 = 0. Determine o valor de:
a) r1 + r2
b) r1 . r2
c) (r1 + 3).(r2 + 3)
d) 1/r1 + 1/r2
e) r1² + r2²

Soluções para a tarefa

Respondido por TheAprendiz
68
2x^2-6x+3=0
Δ = (-6)^2-4*2*3
Δ = 36 - 24
Δ = 12

r1= \frac{-(-6)+ \sqrt{12} }{2*2}= \frac{6+2 \sqrt{3} }{4}= \frac{3\ +\ \sqrt{3}}{2}

r2 =  \frac{-(-6)- \sqrt{12} }{4}= \frac{6-2* \sqrt{3} }{4}  =  \frac{3\ -\ \sqrt{3} }{2}

a)  \frac{3+ \sqrt{3} }{2}+ \frac{3- \sqrt{3} }{2} =  \frac{6+2 \sqrt{3}+6-2 \sqrt{3}  }{4} =  \frac{12}{4}=3

b)  \frac{3+ \sqrt{3} }{2}* \frac{3\ -\ \sqrt{3} }{2}= \frac{9-3 \sqrt{3}+3 \sqrt{3}-3  }{4}= \frac{9-3}{4}= \frac{6}{4}= \frac{3}{2}

c) ( \frac{3+ \sqrt{3} }{2}+3)*( \frac{3- \sqrt{3} }{2}+3) =  \frac{9+ \sqrt{3} }{2}* \frac{9- \sqrt{3} }{2}= \frac{81-9 \sqrt{3}+9 \sqrt{3}-3  }{4}= \frac{81-3}{4}=  \frac{78}{4}= \frac{39}{2}

d)  \frac{2}{3+ \sqrt{3} }+ \frac{2}{3- \sqrt{3} }= \frac{6-2 \sqrt{3}+6+2 \sqrt{3}  }{(3+ \sqrt{3})*(3- \sqrt{3}) }  =   \frac{12}{9-3 \sqrt{3}+3 \sqrt{3}-3  }= \frac{12}{6}=2

e) ( \frac{3+ \sqrt{3} }{2})^2+( \frac{3- \sqrt{3} }{2})^2=( \frac{12+6 \sqrt{3}}{4})+( \frac{12-6 \sqrt{3} }{4})= \frac{48+24 \sqrt{3}+48-24 \sqrt{3}  }{16} = \frac{96}{16}     =6


Perguntas interessantes