Matemática, perguntado por savioaraujo500, 7 meses atrás

10. Se A(5, 1) e B(5, 3) são vértices de um triângulo eqüilátero, as coordenadas do vértice C são:

a) (5+ √3, 2) ou (5-√3, 2).

b) (2,5 + √3).

c) (2,5-√3).

d) (5+ √3,5-√3).

e) (2, 2).

Soluções para a tarefa

Respondido por auditsys
6

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}}

\mathsf{d_{AB} = \sqrt{(5 - 5)^2 + (3 - 1)^2}}

\mathsf{d_{AB} = \sqrt{(0)^2 + (2)^2}}

\mathsf{d_{AB} = \sqrt{0 + 4}}

\mathsf{d_{AB} = \sqrt{4}}

\mathsf{d_{AB} = 2}

\mathsf{d_{AC} = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2}}

\mathsf{2^2 = (x_C - 5)^2 + (y_C - 1)^2}

\mathsf{((x_C)^2 - 10x_C + 25) + ((y_C)^2 - 2y_C + 1) = 4}

\mathsf{d_{BC} = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2}}

\mathsf{2^2 = (x_C - 5)^2 + (y_C - 3)^2}

\mathsf{((x_C)^2 - 10x_C + 25) + ((y_C)^2 - 6y_C + 9) = 4}

\mathsf{(x_C)^2 - 10x_C + 25 + (y_C)^2 - 2y_C + 1 = (x_C)^2 - 10x_C + 25 + (y_C)^2 - 6y_C + 9}

\mathsf{26 - 2y_C = 34 - 6y_C}

\mathsf{4y_C = 8}

\mathsf{y_C = 2}

\mathsf{(x_C)^2 - 10x_C + 25 + 2^2 - 2(2) + 1 = 4}

\mathsf{(x_C)^2 - 10x_C + 22 = 0}

\mathsf{\Delta = b^2 - 4.a.c}

\mathsf{\Delta = (-10)^2 - 4.1.22}

\mathsf{\Delta = 100 - 88}

\mathsf{\Delta = 12}

\mathsf{x = \dfrac{-b \pm \sqrt{\Delta}}{2a} = \dfrac{10 \pm \sqrt{12}}{2} \rightarrow \begin{cases}\mathsf{x' = \dfrac{10 + 2\sqrt{3}}{2} = 5 + \sqrt{3}}\\\\\mathsf{x'' = \dfrac{10 - 2\sqrt{3}}{2} = 5 - \sqrt{3}}\end{cases}}

\boxed{\boxed{\mathsf{S = \{\{5 + \sqrt{3},2\};\{\:5 - \sqrt{3},2\}\}}}}\leftarrow\textsf{letra A}

Respondido por EinsteindoYahoo
0

Resposta:

A(5, 1) , B(5, 3) ,C(x,y)

dAB²=(5-5)²(1-3)²=0+4=4

dAC²=(5-x)²+(1-y)²

dBC²=(5-x)²+(3-y)²

dAC²=dBC²

(5-x)²+(1-y)² = (5-x)²+(3-y)²

(1-y)² =(3-y)²

1-2y+y²=9-6y+y²

1-2y=9-6y

4y=-8

y=2

dAC²=(5-x)²+(1-y)²

4 =5²-10x+x²+(1-2)²

4 =25-10x+x²+1

x²-10x+22=0

x'=[10+√(100-88)]/2=(10+2√3)/2=(5+√3)

x''=[10-√(100-88)]/2=(10-2√3)/2=(5-√3)

(5+√3 ; 2)  ou (5-√3 ; 2)

Letra A

Perguntas interessantes